首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For future reactors, the control and cooling of ex-vessel corium melts is under consideration to increase the passive safety features even for very unlikely severe accidents. In this context, different research activities are studying ex-vessel corium behaviour and control, including the implementation of a core cooling device outside the reactor pressure vessel in order to prevent basement erosion and to maintain the integrity of the containment. This paper describes current research on key phenomena which must be understood and quantified to be finally controlled by the cooling device. These are the release of corium melt from the pressure vessel, the temporary retention of the melt in the reactor cavity until melt through of the gate, spreading of the melt on a large surface, and finally the cooling and solidification of the melt by direct water contact. The experiments use high temperature melts which are similar to corium melts. Where necessary, models are developed to transfer the results to reactor scale.  相似文献   

2.
One of the problems which must be solved in severe accidents is the melt-concrete interaction which does occur when the core debris penetrates the lower pressure vessel head and contacts the basement. To prevent these accident consequences, a core catcher concept is proposed to be integrated into a new pressurized-water reactor design. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on the process of water inlet from the bottom.In order to justify the dominant process during flooding of the melt from the bottom, prototypic experiments with thermite melts in laboratory scale have been carried out. In these experiments flooding and early coolability of the melt is demonstrated. To obtain more detailed information on the important process of water penetration into the melt, a simulant experiment has been conducted using a transparent plastic melt with the typical viscosity behaviour of an oxidic corium melt and a temperature allowing evaporation of water. In every experiment the melt is flooded, and complete freezing in the form of a porous layer occurs within a few minutes only.  相似文献   

3.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

4.
ABSTRACT

In the event of a severe accident, past experiences such as Three Mile Island and Fukushima Daichi have shown that the reactor core of a light-water nuclear reactor, if not properly safeguarded, could go through a meltdown. This will be followed by the formation of a corium, a mix of molten fuel elements, and liquid metals from the Reactor Pressure Vessel (RPV). In the worst-case scenario, a melt through from the RPV can occur and lead to the spreading of the corium, in the form of a molten element’s jet impinging on a flat concrete structure of the Primary Containment Vessel (PCV). To enhance the decommissioning and the safety procedure, scope of the present article is to deepen the understanding of the phenomena involved in the mentioned scenario, mainly jet-instability and molten material spreading. In the present study, experiments were carried out, by using corium simulant materials such as Copper and Tin, to investigate the link between the instability of the gravity-driven molten metal jet and the impinging followed by its spreading over a flat area.  相似文献   

5.
For the mitigation of severe accidents, the European Pressurized Water Reactor (EPR) has adopted and improved the defense-in-depth approaches of its predecessors, the French “N4” and the German “Konvoi” plants. Beyond the corresponding evolutionary changes, the EPR includes a new, 4th level of defense-in-depth that is aimed at limiting the consequences of a postulated severe accident with core melting. It involves a strengthening of the confinement function and the avoidance of large early releases. The latter requires the prevention of scenarios and events that can result in high loads on the containment, e.g., a failure of the Reactor Pressure Vessel (RPV) at high internal pressure. This is achieved by dedicated design measures.

The paper gives an short overview of the general concept and the strategies for: primary circuit depressurization, H2 mitigation and the avoidance of energetic Fuel Coolant Interactions (FCIs). It then describes, in detail, the conceptual solution for the stabilization and long-term cooling of the molten core.

The EPR melt retention strategy supports itself on the use of an ex-vessel core catcher located in a compartment lateral to the pit. The related spatial and functional separation isolates the core catcher from the various loads during RPV failure and, at the same time, avoids risks resulting from an unintended initiation of the system during power operation.

Within the core catcher, the melt will be passively flooded with water from the Internal Refueling Water Storage Tank (IRWST). Due to the effective cooling of the melt from all sides a stable state will be reached within hours and complete solidification of the melt is achieved after a few days. The core catcher can optionally be supplied by the Containment Heat Removal System (CHRS). In this active mode of operation, the water levels inside spreading compartment and reactor pit rise and the pools become subcooled, so further steaming is avoided. This results in a depressurization of the containment in the long-term.  相似文献   


6.
This paper describes the results of experiments designed to quantify the cooling rate of corium by an overlying water pool. The experiments are intended to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. This information is being used to assess the effectiveness of a water pool in thermally stabilizing a molten-core/concrete interaction and cooling of ex-vessel core debris. The experiments involved corium inventories of 75 kg with a melt depth of 15 cm and diameter of 30 cm. The corium was composed of UO2/ZrO2/concrete to simulate mixtures of molten reactor core components and either siliceous or limestone/common sand (LCS) concrete. Initial melt temperatures were of the order of 2100 °C. The heat transfer rate from the corium was determined through measurements of the vapor production rate from the water pool. The melt was quenched at atmospheric pressure for the first two tests and at 4 bar for the two subsequent tests. Preliminary data analysis indicates that the overall heat transfer rate exceeded the conduction-limited rate for the three melts containing 8 wt.% concrete, but not for the fourth, which had 23 wt.% concrete. Also, the quench rate of the 8 wt.% concrete melts did not vary appreciably with pressure.  相似文献   

7.
In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture, called corium, of highly refractory oxides (UO2, ZrO2) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the basemat decomposition products (generally oxides such as SiO2, Al2O3, CaO, Fe2O3, …). For some years, the French Atomic Energy Commission (CEA) has launched an R&D program which aimed at providing the tools for improving the mastering of severe accidents.Within this program, the VULCANO experimental facility is operated to perform experiments with prototypic corium (corium of realistic chemical composition including depleted UO2). This is coupled with the use of specific high-temperature instrumentation requiring in situ cross calibration. This paper is devoted to the “spreading experiments” performed in the VULCANO facility, in which the effects of flow and solidification are studied.Due to the complex behavior of corium in the solidification range, an interdisciplinary approach has been used combining thermodynamics of multicomponent mixtures, rheological models of silicic semisolid materials, heat transfer at high temperatures, free-surface flow of a fluid with temperature-dependant properties.Twelve high-temperature spreading tests have been performed and analyzed. The main experimental results are the good spreadability of corium–concrete mixtures having large solidification ranges even with viscous silicic melts, the change of microstructure due to cooling rates, the occurrence of a large thermal contact resistance at the corium–substrate interface, the presence of a steep viscosity gradient at the surface, the transient concrete ablation. Furthermore, the experiments showed the presence of the gaseous inclusions in the melt even without concrete substrate. This gas release is linked to the local oxygen content in the melt which is function of the nature of the atmosphere, of the phases (FeOx, UOy, …) and of the substrate. These tests with prototypic material have improved our knowledge on corium and contributed to validate spreading models and codes which are used for the assessment of corium mastering concepts.  相似文献   

8.
In the context of severe accidents, large R&D efforts throughout the world are currently directed towards ex-vessel corium behaviour. Among the mitigation means which can be envisaged, the European industries and utilities are considering the implementation of a core-catcher outside the reactor pressure vessel in order to prevent basemat erosion and to stabilize and control the corium within the containment. The CSC project focused on two key phenomena for external core-catcher efficiency, reliability and safety: spreading and coolability. An experimental programme, covering different scenarios and including both simulant and real materials provided a lot of results which now constitute a large database and which enabled the qualification of computer codes.  相似文献   

9.
During a severe accident of Pressurized Water Reactor(PWR), the core materials was heated, melt located on the lower head of Reactor Pressure Vessel(RPV). With the temperature rise, the corium will melt through the lower head and discharge into the reactor cavity. Those corium will interact with the concrete and damage the integrity of the containment, so some coolability method should used to quench the corium. In order to investigate the progress of MCCI, a MCCI analysis code, that is MOCO, was developed. The MOCO includes the heat transfer behavior in axial and radial directions from the molten corium to the basemat and sidewall concrete, crust generation and growth, and coolability mechanisms reveal the concrete erosion and gas release, which are important for the interaction process. Cavity ablation depth, melt temperature, and gas release are the key parameters in the interaction research. The physical-chemistry reaction is also involved in MOCO code. In the present paper, the related MCCI experiment data were used to verify the models of the MOCO and the calculation results of MOCO were also compared with other MCCI analysis codes.  相似文献   

10.
Large-scale ECOKATS experiments are performed to study spreading of an oxide melt on ceramic and concrete surfaces. The oxide melt generated by a thermite reaction was composed of 41 wt.% Al2O3, 24 wt.% FeO, 19 wt.% CaO and 16 wt.% SiO2. This melt was selected as the most appropriate simulation of a corium melt because of its wide freezing range of approx. 450 K. Despite a rather low liquidus temperature, the attempt to measure melt viscosity failed. As spreading of high-temperature oxide melts is nearly isothermal during the early phase of motion, i.e., only thin thermal boundary layers will develop, the melt viscosity can be estimated from a two-dimensional spreading experiment, ECOKATS-V1, on a ceramic substrate by approximate self-similar solutions. To further study the influence of the gas release from the substrate caused by thermal erosion of the underlying concrete by a corium melt on spreading, a large amount of the oxide melt was released into a 2.6 m long and 0.29 m wide channel leading into a 3 m × 4 m rectangular surface. Spreading on a concrete substrate is influenced by the gas release from the decomposed concrete, which changes viscosity. A viscosity increase by a factor of 3.6 was estimated from spreading in the concrete channel.  相似文献   

11.
A core catcher concept is proposed to be integrated into a new PWR design based on the standard German PWR. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core-melt based on the process of water inlet from the bottom through the melt.To ge more detailed information on the very important process of water penetrating into the melt, simulant experiments have been conducted using a transparent plastic and a solder melt representing the oxidic and metallic part of the core-melt. It appears from the results that fragmentation of the melts can be achieved by proper selection of water supply pressure and water feed cross-section.The important part of the transient medium scale experiments with thermite melts, conducted since mid 1993, is to get information on the process of evaporation of water by water ingression in hot melts from below and to investigate whether there is a possibility of strong melt-water interactions, or even steam explosions. The experimental set-up represents a section of the core catcher. A thermite melt is located on the catcher plate with water supply from the bottom. After ignition of the melt, the upper sacrificial layer is eroded until water penetrates into the melt from the bottom through the holes in the supporting plate and fragmentation and simultaneous solidification of the melt occurs. The experiments, up to now, show that flooding and early coolability of the melt by water addition from the bottom are achieved.These experiments serve also as pretests for the COMET-H experiments with sustained heating planned to be conducted in the BETA-facility at the beginning of next year.  相似文献   

12.
In the frame of the LACOMECO (large scale experiments on core degradation, melt retention and containment behavior) project of the 7th European Framework Program, a test in the DISCO (dispersion of corium) facility was performed in order to analyze the phenomena which occur during an ex-vessel fuel–coolant interaction (FCI). The test is focused on the premixing phase of the FCI with no trigger used for explosion phase. The objectives of the test were to provide data concerning the dispersion of water and melt out of the pit, characterization of the debris and pressurization of the reactor compartments for scenarios, where the melt is ejected from the reactor pressure vessel (RPV) under pressure. The experiment was performed for a reactor pit geometry close to a French 900 MWe reactor configuration at a scale of 1:10. The corium melt was simulated by a melt of iron–alumina with a temperature of 2400 K. A containment pressure increase of 0.04 MPa was measured, the total pressure reached about 0.24 MPa. No spontaneous steam explosion was observed. About 16% of the initial melt (11.62 kg) remained in the RPV vessel, 60% remained in the cavity mainly as a compact crust. The fraction of the melt transported out of the pit was about 24%.  相似文献   

13.
An evaluation of the ex-vessel core catcher system of a sample advanced light water reactor was presented. The core catcher was designed to cool down the molten corium through a combined injection of water and gas from the bottom of the molten corium, which could be effective in the reduction of rapid steam generation. By using the MELCOR code, a scenario analysis was performed for a representative severe accident scenario of the ALWR, that is, the 6-in. large break loss of coolant accident without safe injection. The spreading characteristics of ejected corium at vessel breach were asymptotically evaluated on the core catcher horizontal surface. The composition of the molten corium, the decay power level, and the sacrificial concrete ablation depth with time were obtained by a sacrificial concrete ablation analysis. The corium cooling history in the core catcher during the coolant injection was evaluated to calculate the temporal steam generation rate by considering an energy conservation equation. These were used as the major inputs for the temporal calculations of containment pressure which was performed by using the GASFLOW code. Several cases with change of water and gas injection rates were calculated. It was confirmed that the bottom water/gas injection system was an effective corium cooling method in the ex-vessel core catcher to suppress the quick release of steam.  相似文献   

14.
The USNRC/SNL OLHF program was carried out within the framework of an OECD project. This program consisted of four one-fifth scale experiments of a reactor pressure vessel (RPV) lower head failure (LHF) under well controlled internal pressure and large throughwall temperature differentials; the objectives were to characterize the mode, timing and size of a possible PWR lower head failure in the event of a core meltdown accident. These experiments should also lead to a better understanding of the mechanical behavior of the reactor vessel lower head, which is of importance both in severe accident assessment and the definition of accident mitigation strategies. A well-characterized failure of the lower head is of prime importance for the evaluation of the quantity of core material that can escape into the containment, since this defines the initial conditions for all ex-vessel events. A large quantity of escaping corium may lead to direct heating of the containment or ex-vessel steam explosion. These are important issues due to their potential to cause early containment failure. The experiments also provide data for model development and validation. For our part, as one of the program partners, a 2D semi-analytical model has been developed and used to simulate these experiments. The aim of this effort is to develop a simplified but well predicting code that can be then implemented in European integral severe accident computer codes (ASTEC, ICARE/CATHARE). This paper presents the detailed mathematical formulation of this simplified method which is used to interpret the experimental results. The axi-symmetric shell theory under internal pressure proposed by Timoshenko has been utilised. The solution to the equilibrium equations is presented, with particular attention to the Rabotnov analytical formula. The radius and the polar angle of the deformed structure have been written as analytical expressions in order to take the large displacements and large strains into account using our mathematical formulation. The Norton type creep law and the Kachanov damage law have been used. Several failure criteria were used in the calculations and their effect on the numerical results is discussed. This 2D semi-analytical model gives very satisfactory results when compared, with the experimental and numerical results that were presented recently in the Benchmark calculations based on the first test of the OLHF program. The performance of this model is also illustrated by its capacity to accurately simulate the deformation of the lower head, including the variation of wall thickness.  相似文献   

15.
The COMET-L3 experiment considers the long-term situation of corium/concrete interaction in an anticipated core melt accident of a light water reactor after the metal melt is layered beneath the oxide melt. The experimental focus is on the cavity formation in the basemat and the risk of a long-term basemat penetration by the metallic part of the melt. The experiment investigates the two-dimensional concrete erosion in a cylindrical crucible of 60 cm in diameter fabricated from siliceous concrete in the first phase of the test, and the influence of surface flooding in the second phase. The initial mass of the melt was 425 kg steel and 211 kg oxide. Decay heating in the two-component metal and oxide melt is simulated by sustained induction heating of the metal phase that is overlaid by the oxide melt.In the initial phase of the test, the overheated, highly agitated metal melt causes intense interaction with the concrete, which leads to fast decrease of the initial melt overheat and reduction of the initially high concrete erosion rate. Thereafter, the erosion by the metal melt slows down to about 0.07 mm/s into the axial direction. Lateral erosion is by a factor of 3 smaller. Surface flooding of the melt is initiated at 800 s. Flooding does not lead to strong melt/water interactions and to penetration of water into the melt. Concrete erosion continues with about 0.040 mm/s until the melt reaches the maximum erosion limit of the crucible. Post-test analysis of the solidified melt was performed after the crucible was sectioned. The solidified melt shows no indication of water ingression from the upper surface. Tight surface crusts explain poor heat removal to the flooding water and the ongoing concrete erosion also after the top flooding.Details of the experiment are reported. The experiment shall be used for validation of models and computer codes for safety assessment.  相似文献   

16.
The objective of the EUROCORE (European Group for Analysis of Corium Recovery Concepts) Concerted Action is to obtain a clear view of the state-of-the-art for melt stabilisation as considered in accident management schemes and to better identify Research and Development (R&D) needs. Five different melt stabilisation concepts have been discussed: in-vessel retention with external cooling, core-concrete interaction with top cooling, ex-vessel spreading with top flooding, water injection by bottom flooding, and crucible concept with sacrificial material. For each concept, main unresolved problems are discussed in this paper and recommended R&D actions are outlined. The project started on 1 March 2000 and ended on 28 February 2002.  相似文献   

17.
Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO2, ZrO2, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.  相似文献   

18.
A good understanding of the mechanical behaviour of the reactor pressure vessel (RPV) lower head is necessary both for severe accident assessment and for the definition of appropriate accident mitigation strategies. Indeed, a well-characterized failure of the lower head leads to a better evaluation of the quantity and kinetics with which core material can escape into the containment. These are the initial conditions for several ex-vessel events such as direct heating of the containment or molten core-concrete interaction.In this context, the objectives of the joint on-going work of the WP10-2 group of SARNET are: (1) improvement of predictability of the time, mode and location of RPV failure; (2) development of adequate models with the ultimate aim of being included into integral codes; (3) interpretation/analysis of experiments with models/codes combined with sensitivity studies; and (4) better understanding of the breach opening process in order to better characterize the corium release into the containment.Different approaches are considered: a simplified but well predicting model recently implemented in the severe accident Astec and Icare-Cathare codes, and viscoplasticity models implemented in the Cast3m, Ansys and Code_Aster finite element codes. Several failure criteria are considered: stress criterion, strain criterion and damage evaluation (coupled way or post-evaluation).In this paper, the OLHF-1 experiment has been used to assess the models, to perform sensitivity studies and to evaluate failure criteria that could be applied in the case of reactors. All the partners performed 2D axisymmetric analyses, allowing the evaluation of time, mode and location of vessel failure. Nevertheless, CEA conducted further 3D calculations in order to study crack propagation and the corresponding results will be presented separately at the end of the paper. The numerical formulation of the different models used is given and a comparison of experimental and numerical results is presented. The paper also shows the progress made with the objective of defining failure criteria that can be used for reactor vessel applications.  相似文献   

19.
In the very unlikely case of a core melt accident in a nuclear power plant, the reactor pressure vessel could fail and corium melt could be released into the reactor cavity. Subsequent processes could result in a threat of the containment integrity. As a counter-measure the implementation of a core-catcher device in nuclear power plants is envisaged. Such a core-catcher concept has been developed at the Forschungszentrum Karlsruhe (FZK, Germany) within the COMET project. It is based on water injection into the melt layer from the bottom, yielding rapid fragmentation of the corium, porosity formation and thus coolability. Detailed large scale experiments with sustained heating of melts have highlighted the sequences of flooding and cooling and have been used to optimise the COMET concept. The open porosities and large surfaces that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating coolant water and thus allows efficient short-term and long-term removal of the decay heat. Two variants of the bottom flooding concept have been developed and seem technically mature for reactor application. Corium layers up to 0.5 m high are safely arrested and cooled by water supply with 0.2 bar overpressure.The conceptual and experimental work at FZK is accompanied by theoretical investigations at IKE, University of Stuttgart. These investigations address porosity formation as well as quenching and long-term coolability of layers with resulting porosities. The aim of the theoretical work is to get a better understanding of the underlying processes of porosity formation in order to generally support the applicability of the concept for real conditions and to allow checks and optimisation for various conditions. A model for porosity formation is presented, which assumes that this process is essentially determined by strong local pressure buildup from strong evaporation due to water injection from below and the restriction of steam removal by friction in the melt. The effect of key parameters is investigated and compared to experimental results. Agreement about the influence and importance of these parameters as well as essential quantitative effects is found.  相似文献   

20.
在堆外蒸汽爆炸计算中,液柱碎化模型影响着熔融物液滴生成速率、液滴直径、液滴分布、液滴凝固和气泡比例等粗混合参数和现象,从而影响了蒸汽爆炸的冲击载荷。本文基于MC3D V3.8程序,采用不同的液柱碎化模型(CONST模型和KHF模型)对先进压水堆堆外蒸汽爆炸进行计算分析,探讨了CONST和KHF模型对蒸汽爆炸计算的影响。结果表明,两种模型计算的粗混合状态类似;在熔融物触底时刻,爆炸性准则几乎相同,此时触发爆炸得到的冲击载荷差别很小,表明该时刻触发爆炸时不同液柱碎化模型对爆炸冲击计算的影响较小;在本文所定义的工况下,先进压水堆堆坑墙体承受的最高压力约为20 MPa,最大冲量小于0.2 MPa•s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号