首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 468 毫秒
1.
采用固态电解质和金属锂的全固态锂电池被认为是解决传统使用液态电解质的锂离子电池安全性差和能量密度低的终极方案。近年来,固态硫化物电解质在离子电导率和空气稳定性研究等方面取得了较大进展,但固态硫化物电池体系还有一些问题亟需解决,最为重要的就是固态硫化物电解质与锂金属负极的界面稳定性问题。因此,构建稳定的固态电解质/锂金属负极界面是实现高性能全固态锂电池的关键。该文针对目前基于硫化物电解质的全固态锂电池所面临的机遇和挑战,总结了固态硫化物电解质/锂金属负极界面所面临的问题和设计策略。  相似文献   

2.
全固态电池由正极材料、固态电解质和锂金属负极组成,锂金属负极是全固态电池的重要组成部分.锂金属负极的成功应用不仅可以提高电池能量密度和安全性能,还能降低现有电化学体系的制造成本,全面取代液态锂离子电池.但在实际的应用过程当中,锂金属负极还存在着下列难以解决的问题:锂枝晶、"死锂"粉末化、体积膨胀和抗空气氧气稳定性.针对...  相似文献   

3.
固态锂硫(Li-S)电池通过固态电解质代替传统液态电解液体系,有望同时解决液态Li-S电池多硫化物的穿梭效应、锂金属与液态电解液的副反应、安全性能差等关键科学问题,发挥其高稳定性、高能量密度的优势.然而,固态Li-S电池在固态电解质和电极/电解质界面问题上面临着巨大挑战,本文详细介绍了硫化物固态电解质和聚合物基体电解质在Li-S电池中的研究进展,并重点分析了电极/电解质固-固界面接触问题.针对硫化物固态电解质存在的本征缺陷,阐述了改善固态电解质化学及电化学稳定性的方法;针对有机聚合物电解质,总结分析了影响其离子电导率的关键因素及提升方法.在电极/电解质界面问题方面,揭露了影响界面离子传输及界面稳定性的本征特性,并总结了近年来报道的针对正(负)极/电解质界面离子传输低的改进方法.最后指出要有针对性的解决不同种类电解质的本征缺陷,并结合科学模拟深入研究界面传输机制,在实践中对电极/电解质界面结构的合理设计,对固态Li-S电池的实用化具有重要意义.  相似文献   

4.
全固态锂电池因其高安全性和高能量密度成为最有望替代传统液态锂电池的体系之一.固态电解质是全固态锂电池的核心组成部分,其中硫化物电解质因其高离子电导率、良好的机械延展性等优势成为最具潜力的固态电解质之一.Li3PS4固态电解质具有高离子电导率、宽电化学窗口、低成本等优势,是极具代表的硫化物固态电解质,也是近年来研究较多的...  相似文献   

5.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2021年4月1日至2021年5月31日上线的锂电池研究论文,共有3015篇,选择其中100篇加以评论.正极材料方面的研究主要集中在层状结构高镍三元、高压钴酸锂和尖晶石结构镍锰酸锂的合成条件、表面包覆和体相掺杂改性.硅基复合负极材料的研究重点包括对硅颗粒的包覆和对电极结构的优化以缓冲体积变化.金属锂负极的研究侧重于通过电解液添加剂来调控SEI的生长以及抑制锂枝晶的形成.固态电解质的研究主要包括对氧化物固态电解质、硫化物固态电解质、聚合物固态电解质以及复合固态电解质的合成、结构设计以及相关性能研究.液态电解液方面的研究主要包括提升石墨、硅负极的性能,以及适应高电压镍锰酸锂、三元层状材料、钴酸锂材料等正极材料电池的电解液溶剂、锂盐及添加剂.固态电池方向更多关注于复合正极设计和制备、活性材料表面的修饰、Li金属负极界面修饰.其他电池技术主要包括设计具有高离子/电子导电基体的复合锂硫正极,以及通过电解液添加剂来抑制多硫化物"穿梭效应".测试技术方面涵盖了对Li金属的沉积、硅负极的SEI、复合正极的微结构和界面反应等问题的观测和分析.理论模拟工作涉及固态电池中固体电解质及其与电极界面的稳定性.界面问题侧重于关注固体电解质和Li金属负极界面副反应和Li枝晶生长.  相似文献   

6.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了 Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论.本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点.硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控.金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点.固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究.液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升.对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容.其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及"穿梭效应"的抑制.表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题.理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性.界面主要涉及固态和液态电池中SEI及其可视化表征.  相似文献   

7.
与传统锂离子电池相比,基于无机固体电解质的全固态锂电池,具有安全性能高、循环寿命长、能量密度高等优点,是目前锂电池研究领域的热点之一,未来有望在电动汽车和智能电网等领域得到广泛应用。全固态锂电池中,电极与固体电解质之间的固固接触相比固液接触具有更高的界面接触电阻,同时,界面相容性和稳定性也显著影响全固态锂电池的循环性能和倍率性能。而在固体电解质中,晶界电阻决定了电解质整体的离子电导率,因此,界面问题是决定电池电化学性能的关键所在。本文重点综述了全固态锂电池中各种界面问题的研究现状,主要包括界面调控机理、修饰方法,并指出全固态锂电池中界面调控面临的挑战。  相似文献   

8.
全固态锂电池由于具有安全性高、循环寿命长、能量密度高等特点,在化学电源领域具有非常好的应用前景.因全固态锂电池是一种使用固体电极材料和固体电解质材料,不含任何液体的锂电池,所以全固态锂电池的电极制备以及组装与现有液态锂电池的方法存在较大差异.本文详细综述了典型的几类全固态锂电池的电极制备与组装方法及相应的性能特征,分别针对氧化物、硫化物以及聚合物固体电解质体系,归纳分析其结构、正极制备方法、负极修饰方法以及电池组装方式,并在最后对全固态锂电池的实验室开发组装方式给出了建议,为全固态电池研究的同行们提供借鉴和参考.  相似文献   

9.
全固态锂电池采用金属硫化物FeS2作为正极材料能实现较高的可逆比容量,但是循环过程中较大的应力/应变和不良的固固接触引起的界面失效,严重影响了其在全固态锂电池中的电化学性能.本工作采用溶剂热法制备了 Co掺杂FeS2的纳米颗粒,随后在Co0.1Fe0.9S2纳米颗粒表面原位沉积离子电导率较高的Li7P3S11固体电解质,获得Co0.1Fe0.9S2@Li7P3S11纳米复合材料,并将其应用于全固态锂电池中,过渡金属Co的掺杂能提高FeS2的电化学反应动力学性能,而Li7P3S11固体电解质原位包覆能进一步改善固固接触,提高界面锂离子传输特性,继而提高全固态锂电池电化学性能.进一步通过透射电子显微镜(TEM)表征,证实了 Li7P3S1固体电解质包覆在Co0.1Fe0.9S2纳米颗粒表面.电化学测试表明,Li7P3S11固体电解质颗粒的包覆能有效提高以FeS2为活性物质的全固态锂电池的充放电比容量和循环稳定性.Co0.1Fe0.9S2@Li7P3S11复合材料在200 mA/g的电流密度下,首次放电比容量达到882.1 mA-h/g,循环100圈后放电比容量仍保持在670.9 mA·h/g.本研究有助于推动金属硫化物正极材料在全固态锂电池中的应用,从而为实现更高能量密度的全固态锂电池提供实验依据.  相似文献   

10.
邓攀  陈程  张灵志 《新能源进展》2020,8(5):413-427
硅在自然界中储量丰富,其理论比容量高达4 200 mA∙h/g,已成为高能量密度锂离子电池负极材料的研究热点。但是Si作为负极材料也存在许多不足,最大的问题是电池充放电过程中,硅体积膨胀(高达300%),导致Si基负极材料粉化脱落、电池容量迅速衰减,其循环性能尚难以满足实际需求。通过研究开发硅基负极专用黏结剂材料,可以有效抑制循环过程中硅的体积变化,维持硅负极结构稳定,提升电池循环性能。本文综述了近年来硅基负极黏结剂材料的研究进展,主要从合成高分子聚合物黏结剂、天然高分子聚合物黏结剂、导电高分子聚合物黏结剂三个方面进行详细归纳总结,并介绍了本课题组在硅基负极黏结剂方面的部分研究成果,期望能为将来的硅基负极专用黏结剂的研究和应用提供一些思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号