首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过阳极预锂化技术,可以补充锂离子电池在化成以及后续循环过程中活性锂的损失,由此提高锂离子电池的能量密度以及循环寿命.然而阳极预锂化后锂离子电池衰减机理如何变化,一直没有明确的研究结论.本文研究了经阳极预锂化的石墨-磷酸铁锂电池在高倍率老化过程中,充放电电位、电池容量、电池健康状态(SOH)、电化学阻抗等的演变过程,并...  相似文献   

2.
本文以剩余容量接近80%的软包磷酸铁锂电池为研究对象,研究其在-10 ℃低温充放电循环后的安全性能.对低温和常温循环后的电池进行热失控实验分析,同时解剖电池并测试电池材料的锂元素含量和热稳定性能.测试结果表明,电池低温循环过程中容量急剧衰减,低温循环后电池热失控温度明显降低,低温循环过程中电池负极析出了锂单质,电池材料的热稳定性也发生了变化.另外,还对低温循环后的电池进行了满电状态下的常温搁置实验,实验过程中电池全部产生胀气现象,通过进一步测试分析发现,气体以CO和H2为主.与新电池对比发现,剩余容量接近80%的软包磷酸铁锂电池低温下充放电循环更容易产生锂枝晶,造成其电化学性能发生严重的不可逆衰退,热失控温度明显提前,因此剩余容量接近80%的磷酸铁锂电池应避免在低温下运行.  相似文献   

3.
锂离子电池的热失控是导致储能电站发生起火或爆炸等安全事故的根本原因,研究锂离子电池热失控的发展规律和本征特性对于电化学储能电站的安全监测和故障预警具有重要意义。建立了磷酸铁锂储能电池在过充条件下的三维电化学-热耦合热失控的仿真模型,通过镀锂动力学方程量化过充负极镀锂量,引入SEI膜生长动力学方程反映镀锂与电解液反应速率,以量化负极镀锂与电解液反应产热,并引入其他副反应产热方程共同研究磷酸铁锂电池早期过充热失控温度变化及各副反应产热情况。分别研究了不同充电倍率(1C、2C、3C),不同环境温度(20℃、30℃、40℃)下磷酸铁锂电池热失控早期负极表面镀锂量变化、热失控温度变化曲线以及各副反应产热量变化特性,分析磷酸铁锂电池过充热失控温度发展过程及副反应产热规律。结果表明,负极镀锂与电解液反应作为过充热失控过程最起始的副反应,在电池热失控早期促使了其他副反应的开启,成为过充热失控的起始。本研究可为磷酸铁锂电池过充热失控早期过程探究提供理论参考。  相似文献   

4.
锂离子电池被广泛应用于电子消费品、动力电池和储能等领域。在动力电池领域,磷酸铁锂和三元锂是两种常用的锂离子电池正极材料。磷酸铁锂由于电子电导率和离子扩散系数低的缺点,其快充性能一直不佳。电解液作为锂离子电池中离子传输的载体,在电池正负极之间起着离子传导的作用,也是磷酸铁锂电池获得快充能力的重要保证。在正负极材料、隔膜材料选型的基础上,基于电解液添加剂的机理分析,优化电解液设计,开发了一款性能良好的磷酸铁锂/石墨电池快充电解液。快充电解液以碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)作为溶剂(质量比为3∶7),以1M的双氟磺酰亚胺锂(LiFSI)为锂盐,以2%碳酸亚乙烯酯(VC)、1%硫酸乙烯酯(DTD)、1%氟代碳酸乙烯酯(FEC)、0.5%三(三甲基硅烷)磷酸酯(TMSP)和0.5%丙烯酸卡必酯(EOEOEA)为添加剂。在4C充电倍率条件下,该电解液25℃常温循环寿命超过1500次,45℃高温循环也超过了1000次,具有很好的实际应用价值。  相似文献   

5.
退役动力锂离子电池梯次利用可充分提高动力电池的经济性,然而目前动力电池标识信息混乱、电池荷电状态差异和工作电压重叠均导致无法直接或依据开路电压准确分辨磷酸铁锂动力电池与镍钴锰三元动力电池。为此,基于动力锂离子电池的结构和等效电路,建立了容量与动力电池界面电容、反应电阻、韦伯阻抗和液相电阻的对应关系,通过分析动力电池容量对电化学阻抗实部和虚部的影响探讨了利用阻抗法快速识别退役动力锂离子电池化学体系的可能性。结果表明电化学阻抗实部与虚部的比值与电池容量无关,据此可利用该比值随频率的变化差异快速识别不同化学体系的动力锂离子电池,从而避免依据充放电判断电池化学体系的低效率。此外,软包装磷酸铁锂和镍钴锰三元电池的测试结果也表明10 Ah、12.5 Ah和50 Ah的磷酸铁锂电池阻抗虚部与实部比值随交流信号频率的变化基本相同,但与镍钴锰三元电池明显不同,初步验证了该方法的有效性。  相似文献   

6.
以镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂和钛酸锂4种锂离子动力电池为研究对象,建立测试实验平台,并设计实验流程,综合电流曲线、放电倍率和环境温度等工况因素,研究运行工况对4种锂离子动力电池可用能量、温升的影响。实验结果表明:温度是影响电池可用能量的主要因素之一,钛酸锂电池可用能量受温度影响最小,磷酸铁锂电池受温度影响最大;放电倍率是影响电池可用能量的另一个关键因素,随着放电倍率的增加,4种电池可用能量均出现不同程度的衰减;阶跃电流或阶跃放电频率对镍钴锰酸锂电池和磷酸铁锂电池的可用能量具有较大影响。  相似文献   

7.
探究不同涂炭层的涂炭铝箔对高能量密度磷酸铁锂(LiFePO_(4))动力电池的影响,以石墨+炭黑(GC)和炭黑(C)两种涂炭体系的涂炭铝箔制作的磷酸铁锂软包电池作为研究对象,评估了两种不同涂炭层对锂离子电池电化学性能的影响。物性对比结果显示,GC方案外观为深灰色,石墨与炭黑复合后具有大孔径的蓬松状结构,而C方案外观为黑色,由纳米级炭黑颗粒组成,呈现小孔径疏松状结构。结果显示GC复合涂炭层的黏结力为炭黑涂层的1.18倍。电化学性能结果表明,两种方案的首次库仑效率和放电平台一致性高,而GC方案的电荷转移阻抗更小。GC方案复合涂炭层更有利于提高电池的常温和高温循环性能,而C方案炭黑涂炭层可改善电池的大倍率和低温性能。  相似文献   

8.
为了提高退役电池健康状态估计的速度和精度,针对某电动大巴车退役的方形磷酸铁锂电池,选取其中8只电池继续进行循环老化实验,并在不同循环周期后进行电化学阻抗测试.根据锂离子电池阻抗特性,提取300 Hz、60 Hz以及1 Hz下的实部、虚部和模值为特征参量,将测试时间由十几分钟缩短至几秒钟.以特征参量为输入参数,结合BP神...  相似文献   

9.
锂离子二次电池(LIBs)是当今新能源领域的主流储能器件。磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一。如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战。本文通过对近期相关文献的探讨,归纳总结了近年来针对磷酸铁锂正极材料的主流改性策略。详细分析了元素掺杂提高材料电化学性能的内在机理,梳理了不同包覆剂对磷酸铁锂的保护机制,这两种手段可有效提高磷酸铁锂正极材料的电子电导率和离子扩散速率,实现材料更高的能量密度、更长的循环寿命和更高的倍率性能。此外也总结了磷酸铁锂常见补锂添加剂的特性及其对正极首圈库仑效率和放电比容量的改善行为。综合分析表明,多种元素共掺杂,先进碳材料包覆和高容量补锂材料的添加有望成为提升磷酸铁锂电化学性能的重要策略。最后,对磷酸铁锂正极未来在商业化生产改良和开发柔性电极等方向的发展前景和面临的挑战进行了展望。  相似文献   

10.
由于稳定性好、可靠性高等优点,近年来磷酸铁锂电池在储能和变电系统中得到大量应用.为研究大容量磷酸铁锂电池的火灾危险性,通过自主设计的锂离子电池火灾测试平台,开展了 228 A-h磷酸铁锂电池的热滥用测试,系统研究了该大型电池的燃烧过程及产热规律,对比分析了不同荷电状态(SOC)下目标电池的火灾特性.结果表明电池的燃烧行为可大致分为初次射流火、稳定燃烧、多次射流火以及火焰熄灭等阶段;燃烧行为会进一步加速电池温度的上升,而对于荷电状态较高的电池,内短路是造成其温度迅速跃升的关键因素;荷电状态较高的电池燃烧过程更加剧烈,具体表现为电池温度、热释放速率(HRR)、燃烧热将会更高,相应电池的燃烧时间也将更加短暂.此外,高温会造成电池电压的微量衰减,但是电池的安全泄压时间往往早于电压跳水时间.本研究结果旨在为锂离子电池系统在储能、变电等领域的安全设计及火灾防控技术提供理论和技术支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号