首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以葡萄糖为碳源,用水热法成功制备了碳微球,再以Ti(SO_4)_2为钛源,制备了核壳结构的C/TiO_2复合微球.为提高材料介电损耗,将样品在N_2氛围中不同温度条件下进行了碳化.采用X射线衍射仪、扫描电子显微镜和透射电子显微镜对样品的结构和形貌进行了表征,用矢量网络分析仪测试了样品在2~18 GHz范围的复介电常数,并计算其反射损耗.结果表明:碳微球具有较高的微波介电损耗;碳微球与TiO_2复合后,在相同层厚条件下,反射损耗峰向低频迁移;700℃和800℃碳化下的C和C/TiO_2复合材料具有优良的微波吸收性能,其中C-700复合材料最小反射损耗达到-41.2 dB,低于-10 dB的最大吸收带宽达到4.5 GHz,C/Ti-700复合材料的最小反射损耗为-30.0 dB,最大吸收带宽达4.2 GHz.  相似文献   

2.
为有效提升吸波材料的电磁吸收强度和有效吸收带宽,采用球磨法对球状Fe-Si-Cr进行扁平化处理,通过机械共混法将不同形貌Fe-Si-Cr和羰基铁粉(Carbonyl iron powder, CIP)复合,研究不同质量比对复合材料电磁参数和微波吸收性能的影响。实验结果表明,大长径比可以提高材料的介电常数和磁导率,并使反射率峰值向低频移动。片状Fe-Si-Cr和CIP的低频吸波性能优于球形粒子。实验制备的复合材料中,样品I的最大反射损耗为-45.92 dB,有效吸收带宽为1.5 GHz。样品L的最大反射损耗为-22.11 dB,有效吸收带宽大于6.2 GHz。吸波剂的形貌对材料的电磁吸收性能有显著影响。将不同形貌的CIP和Fe-Si-Cr按不同配比复合后,可以得到不同频率下性能优良的吸波体。利用阻抗匹配函数可以从理论上预测出反射损耗峰值对应的吸波剂厚度和频率。双层吸波材料相比于单层吸波材料,其有效吸收带宽更大,可以通过改变匹配层、吸收层的厚度来获得不同频率下吸波性能优良的吸波体,更易满足新型吸波材料“薄、轻、宽、强”的要求。  相似文献   

3.
为研究纳米碳纤维增强混凝土的介电特性,发现纳米碳纤维增强混凝土对电磁波的反射与损耗规律,采用波导法测试纤维掺量为0、0.1%、0.2%、0.3%、0.5%的纳米碳纤维增强混凝土在1.7~2.6 GHz频率范围内的介电常数。分别从相对复介电常数实部、相对复介电常数虚部、损耗角正切等方面分析了纤维掺量、频率对纳米碳纤维增强混凝土介电特性的影响,并对比分析0.3%纤维掺量下纳米碳纤维和普通碳纤维对混凝土材料介电特性的影响。结果表明:纳米碳纤维的掺加提高了混凝土材料相对复介电常数实部和虚部、损耗角正切,增强了混凝土材料对电磁波的损耗能力;纤维掺量越大,纳米碳纤维增强混凝土介电特性越强,对电磁波的损耗能力越大;纳米碳纤维对混凝土材料介电特性的提高效果强于碳纤维。  相似文献   

4.
铁磁金属颗粒可以实现电磁特性的有效调控,但颗粒局部团聚会诱发涡流效应,限制材料吸波性能的进一步提高.本文通过简单温和的溶剂热法分别制备了二维片状、三维球形以及枝晶形貌的Co颗粒.与球形及枝晶颗粒相比,Co微米片在C~Ku(4~18 GHz)波段呈现出强、宽、薄的吸波特性.SEM表征结果显示制备的Co微米片直径为12~78μm,厚度为0.1~0.5μm, VSM测量表明Co微米片具有优异的静态磁性能,饱和磁化强度高达148.6 A·m2/kg,矫顽力为0.96 A/m.电磁性能测试表明Co微米片具有强介电损耗和磁损耗能力,以其为填料时,最强反射损耗(RLmax)在5.0 GHz处高达62.77 dB,有效吸收带宽1.2 GHz,涂层厚度仅为2.37 mm.Co微米片吸收频带宽(完全覆盖C、X和Ku波段),反射损耗强,匹配厚度薄,为合理设计薄、轻、宽、强的电磁波吸收剂提供了良好的模型材料.  相似文献   

5.
为了解决电磁污染对环境和生物安全产生的不良影响,文中采用水热法制备了石墨烯/MnFe_2O_4二元纳米复合物,以聚吡咯掺杂获得石墨烯/MnFe_2O_4/PPy复合物.通过透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(FT-IR)及矢量网络分析仪等手段对石墨烯/MnFe_2O_4/PPy复合物的形貌、结构及性能进行了表征,结果表明,复合物呈现多级结构,其中MnFe_2O_4为立方体状,平均粒径大约都在40nm左右,所制备的石墨烯/MnFe_2O_4/PPy复合材料显示有较强的电磁性能,这主要是由于介电损耗和磁损耗以及增强的界面效应的协同作用,电磁性能测试显示,随着吸波涂层厚度的增加,吸收峰向低频移动,在涂层厚度为4 mm时,最大值反射损耗为-37dB(频率为6.5GHz),反射损耗在-10dB以下的频带宽度为2.5GHz(5.4~7.9GHz).  相似文献   

6.
为制备柔性介孔碳纳米纤维,将其用作自支撑超级电容器材料.本文以热固性酚醛树脂(PF)为碳源,嵌段共聚物Pluronic F127为模板剂,聚乙烯醇缩丁醛(PVB)为助纺剂,通过静电纺丝法和简单的热处理合成新型的一维介孔碳纤维.通过XRD、比表面积以及孔分布对介孔碳纳米材料进行表征.结果表明:加入Pluronic F127的碳纳米纤维内部存在大量的介孔结构.其中,MCNFs-2获得1 444.26 m2/g的比表面积,从而提供了更多的活性位点以及比电容;并且在6 mol/L KOH水溶液中,MCNFs-2电极获得较高的放电比容量(139.6F/g,0.05 A/g的电流密度)和优秀的倍率性能.  相似文献   

7.
以玉米秸秆内芯为基材、过硫酸铵(APS)为引发剂、丙烯酰胺(AM)为聚合单体、N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,在微波辐射下采用接枝共聚的方法制备高吸水材料。考察了物料配比、反应温度、反应时间等因素对材料吸水倍率与接枝效率的影响。结果表明,当反应温度60℃、微波辐射功率300W、AM与秸秆质量比8∶1、APS 0.029mol/L、MBA 0.03mol/L、反应时间300s,所得材料对去离子水和生理盐水的吸收倍率分别为342和137g/g。扫描电子显微镜对产物的微观形貌表征结果表明,材料内部呈现多孔状,有利于快速吸水。  相似文献   

8.
以椰壳炭为原料,水为活化剂,利用同步热重/差热分析仪(TG/DTA)对椰壳炭活化的机理、反应热效应以及微波辐照对微波椰壳活性炭制备的影响进行了探讨。结果表明:在40℃/min升温条件下,不同的椰壳炭都有一个吸热脱水失重阶段。浸渍后失重速率、活化点以及相应放热温度区间也随着增加。椰壳炭浸渍时间为48 h,在390~998℃失重达到32.048%,放热温度区间为153.62~855℃,放热效应有利于水蒸气与炭在800~900℃高温下的吸热活化反应,同时微波辐照能使水-椰壳炭迅速达到活化反应温度。当活化时间为3~5 min,水蒸气流量为3.5~5.5 mL/min时,微波椰壳活性炭的碘吸附值达到1 031 mg/g,亚甲基蓝吸附值达到10mL.0.1/g。研究结果为微波椰壳活性炭的制备提供了理论依据。  相似文献   

9.
当微波照射在物质上,会呈现出穿透、反射和吸收三个特性。物质对微波的吸收程度主要由物质的介质损耗系数决定,物质吸收电磁波后会产生诸如发热等物理特性的变化,相应的电磁波能量就会衰减。通过检测这些物理变化,可以检测物质的存在以及含量,利用电磁波具有穿透特性可以实现无损检测。  相似文献   

10.
为提高超级电容器用的活性炭电化学性能,通过物理化学两步活化法制备煤基活性炭.以太西无烟煤为原料,通过成型和炭化后,用CO_2物理活化制得柱状活性炭(AC-1).将AC-1酸洗脱灰,并用KOH水溶液浸渍,进行第2步化学活化,制得超级电容器用的煤基活性炭(AC-2),两步活化后总收率为45.18%.将活性炭制备成电极材料,并在三电极和双层电容器体系下进行电化学性能测试.结果表明:在KOH电解液浓度为6mol/L,电流密度为0.5A/g时,三电极体系下,比电容由68.5F/g(AC-1)提高到122.5F/g(AC-2),在纽扣式超级电容器体系下,比电容由75F/g(AC-1)提高到165.5F/g(AC-2),且AC-2具有良好的长循环稳定性,经过5 000次的循环后电容量几乎无衰减.与物理活化所得活性炭相比,物理化学两步活化所得活性炭的总孔容和中孔率明显增加,其作为电极材料的电化学性能显著提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号