首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用固态电解质和金属锂的全固态锂电池被认为是解决传统使用液态电解质的锂离子电池安全性差和能量密度低的终极方案。近年来,固态硫化物电解质在离子电导率和空气稳定性研究等方面取得了较大进展,但固态硫化物电池体系还有一些问题亟需解决,最为重要的就是固态硫化物电解质与锂金属负极的界面稳定性问题。因此,构建稳定的固态电解质/锂金属负极界面是实现高性能全固态锂电池的关键。该文针对目前基于硫化物电解质的全固态锂电池所面临的机遇和挑战,总结了固态硫化物电解质/锂金属负极界面所面临的问题和设计策略。  相似文献   

2.
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li_(7)La_(3)Zr_(2)O_(12),LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:(1)LLZO基固体电解质粉体材料表面碳酸锂(Li_(2)CO_(3))的形成原因、对电化学性能的影响以及克服这一问题的手段;(2)LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;(3)LLZO/Li界面特性及Li在LLZO基陶瓷电解质中贯穿生长,深入探讨了诱导Li析出和生长的电场、电荷、应力应变等作用机制;(4)复合正极内部界面问题及其与电解质层外部接触界面的一体化构筑方法。希望通过本文对LLZO固态锂电池界面问题的关键科学和技术的分析总结,为构筑高导通高稳定界面,推动高性能固态锂电池发展提供思路。  相似文献   

3.
与目前采用有机电解液的商业化锂离子电池相比,引入固体电解质的固态锂电池在同时提升电池能量密度和安全性方面具有巨大潜力,成为开发下一代锂电池的重点。在众多固体电解质材料中,石榴石型的锂镧锆氧(Li7La3Zr2O12,LLZO)凭借高锂离子电导率、优异的对锂稳定性和宽电化学窗口等优点受到广泛关注。然而,LLZO的引入带来诸多界面之间的突出问题,例如固固界面的物理接触、应力应变、电荷重新排布以及电化学稳定性等。这些问题不仅是影响电池性能的关键因素,而且带来了很多新的物理化学现象需要深入研究。因此,本文从LLZO基固体电解质与电极之间的外部界面和固体电解质及复合电极内部界面两个角度入手,依据本课题组多年的研究积累,结合领域内最新研究动态,详细讨论了:(1)LLZO基固体电解质粉体材料表面碳酸锂(Li2CO3)的形成原因、对电化学性能的影响以及克服这一问题的手段;(2)LLZO基固体电解质层内部界面调控对锂离子电导率及电池电化学性能的影响;(3)LLZO/Li界面...  相似文献   

4.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter~*”为关键词检索了Web of Science从2022年2月1日至2022年3月31日上线的锂电池研究论文,共有3128篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料、镍酸锂、钴酸锂和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。负极材料的研究重点包括对硅颗粒的包覆,具有三维结构的硅/碳、硅/锡复合材料。金属锂负极的界面构筑及三维结构设计受到重点关注和研究。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括适应高电压正极材料及提升金属锂负极、石墨负极电池性能的添加剂与溶剂研究。针对固态电池,复合正极制备、双层电解质结构、锂界面枝晶及副反应抑制有多篇,其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了锂扩散、SEI形成、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及三元材料掺杂、电解液物化性质以及新型固态电解质搜寻,电池中电解液与正负极的界面以及固态电解质与Li的界...  相似文献   

5.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的...  相似文献   

6.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了 Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论.本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点.硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控.金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点.固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究.液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升.对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容.其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及"穿梭效应"的抑制.表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题.理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性.界面主要涉及固态和液态电池中SEI及其可视化表征.  相似文献   

7.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2021年12月1日至2022年1月31日上线的锂电池研究论文,共有3795篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、富锂正极材料的包覆和掺杂改性,以及其在高电压下所发生的表面和体相的结构演变。金属锂负极的研究包含金属锂的表面修饰、三维结构设计及其沉积形态和均匀性的研究。合金化储锂负极材料的研究侧重于复合电极结构设计和各类黏结剂的开发,以缓解循环过程中负极材料的体积变化,维持电极完整性。固态电解质的研究主要包括对现有固态电解质的合成、掺杂、结构设计、稳定性和相关性能研究以及对新型固态电解质的探索。而其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注于复合正极设计和界面修饰和影响锂枝晶生长的因素。其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及“穿梭效应”的抑制。电池测试技术方面涵盖了对Li金属的沉积形貌及SEI、快充放条件下正极材料各性质、固态电池的界面问题的观测和分析。理论计算涉及掺杂固体电解质电导率、固态电池中界面应力分析等进行了探讨。而界面问题侧重于关注固体电解质和Li金属负极界面稳定性。此外,电极预锂化研究论文也有多篇。  相似文献   

8.
本文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2023年12月1日至2024年1月31日上线的锂电池研究论文,共有6213篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、富锂正极材料的掺杂改性和表面包覆,以及其在长循环过程中的结构演变等。负极材料的研究重点包括硅基负极的界面调控和材料制备优化以缓冲体积变化、金属锂负极的界面构筑与调控。固态电解质的研究主要包括氯化物固态电解质、硫化物固态电解质和聚合物固态电解质的结构设计以及相关性能研究,电解液研究则主要包括不同电解质盐和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、复合正极制备与界面修饰、锂金属负极的界面构筑和三维结构设计有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计、功能涂层和电解液的改进,固态锂硫电池也引起了广泛关注。电池工艺技术方面的研究包括干法等电极制备技术、黏结剂的研究。表征分析涵盖了正极材料的结构相变、锂沉积负极的界面演变等。理论模拟工作侧重于界面离子传输的研究,以及通过...  相似文献   

9.
充放电过程中,锂离子需要在电极活性材料,电极与液态电解质接触界面产生固体的电解质层,全固态电池中的固体电解质以及导电添加剂,黏结剂,活性颗粒形成的固固界面传输.一般而言,固相内部及固相之间的离子传输是电池动力学过程中相对较慢的步骤,因此离子在固体中的传输是锂电池材料研究的重要基础科学问题.本文小结了固体离子学基础知识中关于离子在固体中的传输机制,驱动力,影响离子电导率的几种因素等方面的内容,简介了锂离子在正极,负极,固态电解质中的输运特性,讨论了内源锂和外源锂输运特性的差异以及尺寸效应对于离子输运性质的影响.  相似文献   

10.
将Li1.5Al0.5Ge1.5(PO4)3(LAGP)与少量PEO(LiX)复合,采用溶液浇注法制备了以LAGP为主相的固体复合电解质,研究了LiClO4、LiTFSI、LiBOB 3种锂盐对固体复合电解质离子电导率、电化学稳定窗口、与锂负极界面的化学稳定性和电化学稳定性的影响以及锂盐种类对LFP固态电池循环及倍率性能的影响。研究结果表明,采用LiClO4、LiTFSI、LiBOB 3种锂盐制备的固体复合电解质分解电压均超过5 V,具有较好的电化学稳定性。LAGP-PEO(LiTSFI)固体复合电解质的离子电导率以及室温对锂界面的稳定性相对更高。LAGP-PEO (LiBOB)与锂的界面在60 ℃时相对更稳定。与之对应,采用LAGP-PEO(LiTSFI)和LAGP-PEO(LiBOB)固体复合电解质的LFP全固态电池,分别在25 ℃和60 ℃具有最高的比容量和最好的循环稳定性。  相似文献   

11.
In this study, a gadolinia-doped ceria (GDC)-supported micro tubular SOFC (T-SOFC) was fabricated using extrusion and dip-coating techniques (Cell A). The effects of inserting a scandium-stabilized zirconia (ScSZ) layer as an electron blocking layer between the GDC layer and the GDC-Ni anode layer were also explored (Cell B). The microstructures and electrochemical performances of Cell A and Cell B were investigated and compared. The layer thicknesses of the GDC and ScSZ bi-layer electrolytes were approximately 285 μm and 8 μm respectively. With the inserted ScSZ layer, both the ohmic resistance and the polarization resistance significantly increased at all the operating temperatures. The increase in the ohmic resistance of Cell B was predominantly due to the interfacial resistance, while the substantial escalation in the polarization resistance was mainly because of the low bulk oxygen diffusion process in the ScSZ layer and the smaller charge transfer processes occurring at the interfaces. The OCV of Cell B showed a slight decrease from 1.06 to 0.98 V and that of Cell A experienced an obvious decline from 0.92 to 0.76 V as the temperature rose from 650 to 800 °C. The ScSZ layer of Cell B successfully inhibited the OCV loss caused by the electronic conduction in GDC. The maximum power densities (MPDs) of Cell A at 650, 700, 750, and 800 °C were 0.20, 0.27, 0.33, and 0.36 Wcm−2, and those of Cell B 0.16, 0.23, 0.32, and 0.42 Wcm−2. The MPD of Cell B was improved at temperatures above 750 °C but remained inferior to that of Cell A below 750 °C. This is due to the fact that, as operating temperature increased above 750 °C, the benefit of the higher OCV in Cell B surpassed the deficiency of the higher cell resistance, thereby leading to a higher MPD.  相似文献   

12.
The flowing electrolyte-direct methanol fuel cell is a developing technology that may have practical uses in the future. Its main advantage over a direct methanol fuel cell is that it limits methanol crossover using a flowing electrolyte layer. The flowing electrolyte layer (or flowing electrolyte channel) involves an ion-conducting fluid that allows protons to be transported from the anode to the cathode, and flows through a porous material to wash away crossed-over methanol. In this study, the flowing electrolyte layer is modelled as a porous domain in ANSYS CFX. General flow behaviour and the effects of volume flux, channel thickness, and porous material properties are investigated. It is found that the flow has a flattened velocity profile with thin boundary layers that are virtually independent of volume flux and channel thickness. The pressure drop is mainly dependent on the volume flux and the permeability. It is recommended that cell performance could be improved by using a flowing electrolyte channel that is thinner, and selecting a sufficiently high volume flux and a sufficiently permeable porous material to achieve an optimal combination of pressure drop and methanol removal characteristics.  相似文献   

13.
Studies have been made on electrocatalysts and their plating methods to solid polymer electrolyte (SPE). Perfluorosulfonic acid polymer membranes (Dupont manufactured Nafion) were used as SPE. Noble metals and their alloys were directly attached to both sides of the membrane without a binder by special metal plating methods developed by the present authors. The methods, utilizing reactions of a metal salt solution with a reducing agent on the membrane surface, made it possible to increase the adhesive strength of electrocatalysts to the membrane and also to eliminate, almost perfectly, the resistance of electrocatalyst/SPE interface. Pretreatments of the membrane were also investigated in order to improve the adhesive property. It was found that hydrothermal treatment and gas plasma treatment were more effective. The constituents of cell voltage, i.e. anodic and cathodic overvoltages and ohmic drop, were measured for five noble metals and their alloys. The anodic overvoltages were a major constituent of voltage losses and depended distinctly on the kinds of electrocatalysts used. The anodic overvoltage increased in the following order: Ir < Rh < Rh/Pt < Pt/Ru < Pt < Pd. Pure Ru had high initial activity. However, it was corroded during oxygen evolution. The electrodes based on Ir-Ir alloys were the best electrocatalysts for oxygen evolution and had a Tafel slope of 40–60 mV decade?1. The effects of the operating temperature on the cell performance were also studied. The cathode and anode were a thin layer of Pt and similar layer of Ir alloy, respectively. The cell voltage decreased with an increase in temperature. At a current density of 500 mA cm?2 and at 90°C, the cell voltage was 1.56–1.59 V corresponding to a thermal efficiency (based on ΔH) of 93–95%.  相似文献   

14.
One of the predominant failure modes of polymer electrolyte membrane (PEM) fuel cells is the degradation of the PEM, especially when the fuel cell is used for transportation applications. Numerous studies have been carried out regarding this issue but many aspects of the degradation are not yet understood. This paper reviews the available literature regarding membrane degradation, and attempts to classify the degradation modes into three categories: mechanical, thermal and chemical/electrochemical. The factors that contribute to each mode are discussed, along with detailed mechanisms for some degradations. Some possible mitigation strategies are also explored.  相似文献   

15.
《Journal of power sources》2006,160(1):386-397
A model and an analytical solution for the model are presented for the resistance of the polymer electrolyte membrane of a H2/O2 fuel cell. The solution includes the effect of the humidity of the inlet gases and the gas pressure at the anode and the cathode on the membrane resistance. The accuracy of the solution is verified by comparison with experimental data. The experiments were carried out with a Nafion 112 membrane in a homemade fuel cell test station. The membrane resistances predicted by the model agree well with those obtained during the experiments.  相似文献   

16.
《Journal of power sources》2005,145(2):292-297
Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC).  相似文献   

17.
Microstructural characteristics of passive films on highly oriented pyrolytic graphite (HOPG) lithiated in siloxane-based electrolytes dissolving lithium bis(oxalato) borate (LiBOB) were analyzed. Scanning electron microscopy (SEM) images of the lithiated HOPG showed island-like deposition on the basal planes and film-like deposition on edge planes. X-ray spectroscopy revealed that the film-like deposition exhibited higher concentrations of Si and O than the island-like deposition. Fourier transformation infrared (FT-IR) spectroscopy of the siloxane-based electrolyte and the HOPG surface indicated consumption (decomposition) of LiBOB salt and bond breakage between the siloxane backbone and ethylene oxide side chain function groups. Based on FT-IR spectra from the lithiated graphite surface, the assigned function groups in the products included the flexible groups –Si–O– and –C–O–. These flexible function groups are expected to absorb the volumetric changes in graphite particles during lithiating and delithiating in an electrochemical cell, which will prevent continuous decomposition of siloxane electrolyte on the graphite surface.  相似文献   

18.
The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi2(PO4)3.The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO3 and Li2SO4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm−2 between two platinum electrodes in 5 M LiNO3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm−2 it can reach 2.3 V.LiTi2(PO4)3 was synthesized using a Pechini method and cycled in pH-neutral Li2SO4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g−1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi2(PO4)3 anode with cell voltages of 2 V and above.  相似文献   

19.
A new type of CsHSO4-HZSM-5 inorganic composite electrolyte membrane is prepared by mechanically mixing CsHSO4 (CHS) and nanometer-scale HZSM-5 zeolite powders. The effects of HZSM-5 on the crystallite structure, proton conductivity, and thermal stability of the CsHSO4 electrolyte are investigated. Incorporation of HZSM-5 is found to significantly increase the low-temperature proton conductivity of the CsHSO4 electrolyte, extending its operating temperature down to 100 °C. The composite electrolyte with 40 mol% HZSM-5 shows the highest proton conductivity in the measured temperature range. The low-temperature activation energy of the composite with 40 mol% HZSM-5 is lower than that of the CHS-SiO2 composite. The improvement of the proton conductivity can be attributed to the enhanced interfacial interaction between the two phases. And the small HZSM-5 particles lead to a change in the bulk properties of the ionic salts. The melting point of the CHS-HZSM-5 composite electrolyte is lower than that of the pure CHS electrolyte. The CHS-HZSM-5 composite electrolyte is suitable for polymer electrolyte membrane fuel cells operated at 100-200 °C.  相似文献   

20.
Composite polymer electrolyte membranes containing polyrotaxanes   总被引:1,自引:0,他引:1  
Cast Nafion and sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes containing different amounts of organic nanorod-shaped polyrotaxane (PR) were prepared and characterized, with the aim of improving the methanol barrier property of polymer electrolyte membranes (PEMs) for application in direct methanol fuel cells (DMFCs). PR was prepared using the inclusion complex reaction between α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG) of different molecular weights. The addition of PR to the structure of sSEBS, which involves hexagonal packing of cylinders, reduces the proton conductivity, as well as the methanol permeability, implying the creation of a tortuous path for methanol. The addition of PR to Nafion with ionic clusters reduced the crystallinity. The conductivity of the Nafion composite membranes increased on PR addition and decreased at higher PR contents. The organic PR inside the membrane changed the morphology during membrane preparation and provided a tortuous path for the transport of methanol. All of the sSEBS- and Nafion-based PR composite membranes showed higher selectivity parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号