首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用接触式气液介质阻挡放电装置,采用常压N2和N2+去离子水(H2O)两种介质阻挡放电等离子体对PP无纺布的表面进行改性研究,实验结果表明PP无纺布经N2+H2O等离子体处理60 s后表面出现了超亲水,其表面水接触角降为0°。但是经N2等离子体处理60 s,表面接触角由未处理时的115.8°降低至62°,并未出现超亲水。通过扫描电镜、X射线光电子能谱的对比分析发现,PP经N2+H2O等离子体处理60 s后,表面出现粘连、刻蚀,表面C1s的含量由原来的96.7%下降到31.8%,同时表面O1s和N1s的含量分别增加到38.4%和29.8%,比PP经N2等离子体处理60 s后C1s多降低20.8%,而O1s和N1s的含量分别多增加了12.7%和8.1%,并且PP表面分子出现明显的交联;而FTIR-ATR的结果进一步表明,PP经N2+H2O等离子体处理60 s后表面接入更多的-OH,从而导致表面超亲水。  相似文献   

2.
文章利用二维流体模型对双频调制大气压Ar/O_(2)放电特性进行了研究,着重讨论高低频电压、低频频率等不同匹配方式对等离子体参数的影响,并且通过对电子加热模式、电子密度、中性粒子密度、正离子能量以及正离子总通量等分析了大气压Ar/O_(2)放电双频调控机制。结果表明,低频源电压的改变使得电子加热模式由α模式转变为DA/α混合模式,且等离子体密度、正离子总通量及离子能量均随着低频电压的升高而增大,发生了解耦现象。与低频源电压不同,高频源电压和低频源频率对电子加热模式不产生影响。此外,高频源电压对等离子体密度及正离子总通量影响较大,对刻蚀工业中易对材料造成损伤的离子能量影响很小;而低频源频率对工业中影响影响较大的离子能量和离子总通量影响较大,对等离子体密度影响较小,实现了等离子体密度和离子能量的独立控制。  相似文献   

3.
氢气作为未来主要的清洁能源,将在未来绿色冶金领域发挥关键作用。本文以低温等离子体辅助氢气直接还原炼铁为背景,基于不同已有等离子体反应模型和LXcat数据库建立了二维微波氢气等离子体模型。对比文献实验结果验证了所建立等离子体反应模型和体系的正确与合理性,在此基础上研究得到了微波功率和气体压力变化对等离子体电子密度、以及在铁矿石还原中起主要作用的激发态氢气分子浓度等关键参数的影响特性。结果表明,介质压力一定而微波功率升高,则电子密度升高,但激发态氢气摩尔浓度存在一明显峰值变化过程;当微波功率一定而介质压力升高,则电子密度呈一定指数下降趋势,激发态氢气摩尔浓度保持单调递增状态,不过激发态氢气摩尔分数变化则存在一峰值。另外,分析讨论了微波功率相对过大或气体压力相对过小氢气分子激发态浓度及摩尔分数出现峰值变化的原因与特性。本研究在一定程度上揭示了微波等离子体随微波参数变化的机理特征,可为氢气还原氧化铁绿色冶金相关理论进一步研究和应用提供参考。  相似文献   

4.
针对传统气体放电式等离子体发生器电源效率不高、使用寿命有限等问题,提出了一种零电压软开关高频高压低温等离子体发生方法,并设计了一个高效率低损耗的高频高压低温等离子体发生系统。该系统通过移相全桥软开关控制电路提供控制信号,光耦隔离电路降低强电干扰,在零电压软开关驱动下,经高频谐振升压电路对输入信号升压,实现低温等离子体的稳定发生。实验结果表明,系统工作频率稳定在262kHz,系统能够稳定发生低温等离子体,等离子体束长可达13.1cm,系统工作稳定后,零电压软开关系统的效率为87.4%,与传统直流等离子体发生炬最高77%效率相比,提高了10.4%,实现了驱动管耗的降低和输入电源效率的提升。  相似文献   

5.
文章采用等离子体流体理论模型,研究了双频容性耦合放电中高频源频率对大气压氩气与氧气混合气体放电等离子体的各类粒子密度与各项等离子体参数的影响。通过模拟不同高频源频率的放电,得到了放电空间中各类粒子的密度、电子温度、电场等参数的一维时空分布,进一步了解了双频放电中高频源频率对等离子体特性的影响作用。研究结果表明:当放电电压固定时,随高频源频率的升高,电子密度逐渐增大;电子温度、电场与电势有下降的趋势;各类氩离子密度与氩原子的亚稳态密度随高频源频率的升高而增大;随高频源频率的升高,各类氧离子密度增大,氧原子密度先减小后增大,氧分子的亚稳态密度先增大后减小。电子压力加热、电子欧姆加热、电子加热和能量损失受高频源频率的影响均逐步升高。此外,有效电流密度与有效功率密度随高频源频率的升高大体增加。  相似文献   

6.
电子器件在大气环境下发生沿面闪络导致工作失效是限制其性能的瓶颈问题之一。本文基于高速相机诊断得到了大气条件下陶瓷沿面闪络发展过程,并与真空沿面闪络过程进行了比较。然后基于二维网格粒子法耦合直接模拟蒙特卡罗法(PIC-DSMC)建立了相应的仿真模型,得到了大气条件下陶瓷沿面闪络过程中电子和离子数密度分布演化特性,分析了大气条件下沿面闪络过程中等离子体通道的形成与竞争特性,并与实验结果进行了验证,阐明了大气条件下沿面闪络过程的物理机制,为进一步深入理解沿面闪络问题提供了支撑。  相似文献   

7.
低温等离子体具有能量效率高、装置体积小、室温环境下工作和对电源要求不高等特点,适用于在多变环境下的小规模现场制氢。分析了通过放电产生低温等离子体的物理特征,讨论了提供化学反应能量的高能电子与低温气体中重粒子的相互作用。对各种放电如电晕放电、滑动弧放电、介质阻挡放电、射频放电、微波放电及辉光放电等装置结构进行了介绍,重点阐述产生和维持放电条件、电子能量的影响因素和调节方法。以气态下和液态下产生等离子体进行制氢的实验装置为例,综述了以甲醇、乙醇、重石脑油、甲烷水合物、二甲基醚等液体原料为介质的放电等离子体的产生及特点,主要包括反应器结构、电极结构、转换效率及产氢率等。目前限制低温等离子体制氢技术应用的主要问题是装置结构复杂和制氢效率低等问题。  相似文献   

8.
基于金属纳米颗粒的光散射理论,利用时域有限差分法计算了Ag纳米球阵列不同结构参数下的散射光谱、吸收光谱及散射效率,分析了Ag纳米球阵列在共振波长下的极化电场和极化电荷分布情况,讨论了Ag纳米球阵列的局域表面等离子体(LSP)对GaN基LED发光效率增加的机理。结果表明,随着间距的减小,Ag纳米球阵列LSP的散射峰逐渐呈双模分布,且位于长波段的散射峰蓝移;随着Ag纳米球直径的增大,LSP的共振波长红移且散射效率增大。当LSP的共振波长与LED辐射光波长相匹配时,Ag纳米球阵列的LSP与LED辐射光发生耦合作用,在一定条件下,部分耦合的能量辐射到自由空间,增大LED的内量子效率。  相似文献   

9.
本文设计制作了基于铝基衬底的微沟道阵列器件,并研究了纳秒脉冲微沟道等离子体放电特性。通过调控纳秒脉冲输出波形,获得了脉冲参数对微沟道等离子体放电特性的影响规律。结果表明,相比于传统的正弦波驱动,纳秒脉冲微沟道等离子体放电更集中,耦合效应更明显,且等离子体特性更易于调控。当改变脉冲参数时,6%左右的波形过冲电压会造成微沟道等离子体放电强度~30%的改变。另外,脉冲上升沿时间越短,放电强度越高,当上升沿时间由152 ns缩短至32 ns时,放电强度可提升~30%。  相似文献   

10.
采用氮气(N2)低温等离子体引发苯二甲酸乙二醇酯(PET)纳米纤维薄膜表面接枝,液相低温等离子体处理接枝丙烯酸单体,通过电镜照片、水接触角测试、FTIR测试及力学测试,讨论了液相接枝处理后,薄膜的形态及性能的变化。实验中接枝处理的工艺条件是,丙烯酸接枝溶液体积浓度10%,接枝温度60℃,接枝时间2h。液相低温等离子体接枝处理后,薄膜的表面亲水性得到了有效的提高。  相似文献   

11.
近年来,全球范围因二氧化碳(CO_(2))的过量排放导致的环境问题日益严重,引起世界各国人民的广泛关注。电化学还原CO_(2)转化为清洁能源和高价值化学品,不仅可以有效地缓解CO_(2)导致的温室效应,而且有望为解决能源危机提供重要出路。本文简述了电化学还原CO_(2)的反应原理,对近年报道的一些高选择性的二元金属催化剂进行分类归纳。综述了二元金属材料物质组成、原子配比、微观形貌、颗粒尺寸等物化性质对CO_(2)还原性能的影响规律,并对部分催化剂的选择性增强机理重点分析。最后,讨论了二元金属材料高效选择性电化学还原CO_(2)存在的主要问题和未来可能的研究重点。  相似文献   

12.
通过实验和模拟方式,对比分析了介质阻挡放电和基于多孔阳极氧化铝的毛细管等离子体电极放电。应用阳极氧化法制备的多孔阳极氧化铝(Porous anodic alumina,PAA)作为介质层进行了毛细管等离子体电极放电。研究了多孔阳极氧化铝介质层对毛细管等离子体电极放电的影响,对比分析了相同几何参量的介质阻挡放电和毛细管等离子体电极放电的放电过程。结果表明:应用多孔阳极氧化铝介质的毛细管等离子体电极放电更稳定,放电中产生的更密的微放电有助于提高放电的稳定性;多孔阳极氧化铝介质层的毛细管等离子体电极放电具有相对于介质阻挡放电高出两个数量级的电子密度和更高的电子温度。等离子体参数具有与多孔阳极氧化铝的孔分布同步的周期性,产生了等离子体射流模式,提高了放电稳定性。  相似文献   

13.
提出一种基于多层加权复杂网络的流型分析方法。首先利用电阻层析成像系统获取垂直上升管道气液两相流流动信息,并将测量数据压缩处理以简化数据分析,然后使用多元经验模态分解算法对其进行多尺度分解,进而将流动系统映射到多层加权网络中,通过计算平均加权聚集系数与谱半径定量描述网络结构。研究结果表明,该网络模型可有效揭示泡状流到段塞流的演化过程,从气泡的聚合发展到气塞的逐渐破碎,从伪周期性的出现到衰退都可被网络参数的变化所反映。  相似文献   

14.
为将等离子体射流应用于大气层中的飞行器进行流动控制,对火花放电等离子体合成射流激励器,搭建了一套模拟不同大气层高度气压的真空实验系统,通过改变实验容器内的气压来模拟不同的大气层高度,利用动态压力传感器测量激励器射流出口的压力变化,得到激励器出口射流速度。分别对两个不同结构参数的两电极火花放电等离子体射流激励器进行了实验研究。实验结果表明,随着大气层高度的增加,火花放电等离子体合成射流的峰值速度不减反增;在0~10000m高度之间,射流峰值速度随高度大致成线性关系变化;大气层高度每增加1000 m,射流峰值速度增大15%~25%;在10000 m高度左右,高空射流峰值速度大约是地面的两倍。研究表明,在不同的大气层高度下,加载电压幅值、频率、占空比对激励器性能的作用规律与在地面常压下的作用规律相似。  相似文献   

15.
对莫来石纤维增强SiO_(2)气凝胶复合材料开展面外方向单轴压缩实验,研究不同极限应变、热暴露温度对压缩回弹行为与变形恢复能力的影响,基于微观结构形貌变化阐释内在机制,对加载和卸载阶段的变形行为建立唯像力学模型。结果表明:莫来石纤维增强SiO_(2)气凝胶复合材料的压缩回弹行为呈现非线性特征,极限应变越大,变形恢复能力越差;高温热暴露预处理会对压缩回弹性能产生影响,热暴露温度越高,变形恢复能力越差,基体颗粒-团簇结构的聚集、大尺寸孔洞的形成和塌陷是主要原因;所建立的唯像力学模型可以用来描述材料在压缩加载-卸载时的应力-应变曲线,拟合结果与实验数据吻合较好。  相似文献   

16.
容性耦合射频(CCRF)放电可用于制备大体积、均匀、低温非热平衡等离子体,已得到了国内外的广泛关注。针对CCRF放电过程中等离子体参量的诊断问题,本文提供了一种基于均匀离子密度的描述CCRF放电的等效回路模型(ECM),并根据等效阻抗原理引入能量平衡方程,对等离子体特征参量电子密度n_e和电子温度T_e进行了诊断,诊断结果与等离子体发射光谱诊断结果相一致。实验结果表明:在一般的CCRF放电过程中,放电电流与放电电压波形呈正弦曲线,高次谐波成分较少且总的谐波强度小于基波信号的11%,可以采用ECM描述等离子体放电状态。随着射频输入功率的增加,等离子体电子密度线性增加,但电子温度变化不明显,鞘层厚度逐渐减小,主等离子体区厚度增加;随着工作气体压强的升高,电子密度和电子温度均减小。对于较高的气压,放电在不同的输入功率下分为低功率下的α模式和高功率下的γ模式,这主要是极板表面的俄歇发射过程引起的。  相似文献   

17.
为避免深硅刻蚀工艺所引起的扇贝纹效应,同时减少其工艺气体所带来的温室效应,本文将新一代环保电子刻蚀气C4F6引入硅刻蚀工艺,采用刻蚀与钝化同步进行的伪Bosch工艺刻蚀硅槽孔。研究了ICP功率、RIE功率、腔体压强和C_(4)F_(6)/SF_(6)气体流量比对刻蚀速率、光刻胶/硅刻蚀选择比及刻蚀形貌的影响。结果表明,一定程度增加ICP功率和RIE功率可分别提高等离子体密度和物理轰击刻蚀作用;腔体压强对粒子平均自由径有较大影响;而C4F6流量的增加可加强刻蚀侧壁保护机制。通过综合优化工艺参数,获得了2.8μm/min硅刻蚀速率,3.1的光刻胶/硅刻蚀选择比和侧壁平坦,表面光滑,垂直度高的刻蚀形貌。  相似文献   

18.
为探究等离子体激励对尾迹扫掠下低压涡轮叶栅吸力面附面层分离和总压损失的控制机理,文章采用数值模拟方法分析等离子体激励效应对叶栅流场的作用规律,探究激励位置对流动控制效果的影响。研究表明,激励位置从时均分离点上游向尾缘移动时,叶栅出口处总压损失系数呈现先减小后增大的趋势。当激励器处于吸力面时均分离点下游5%轴向弦长位置,吸力面后部附面层分离现象完全被抑制,出口总压损失系数下降约10%。在吸力面后部施加激励能有效抑制吸力面上的附面层分离,但对端壁区的流场影响较小。  相似文献   

19.
电催化CO_(2)还原反应(CO_(2)RR)不仅可以减轻过量CO_(2)造成的负面影响,而且生成的含碳燃料有利于缓解能源短缺。但是,CO_(2)RR路径较为复杂,存在着选择性低、电流密度低和稳定性差等问题,亟需开发高效廉价的催化剂来推进其发展。超薄材料具有大的比表面积、充分暴露的活性位点、加快的动力学传质和可调的电子结构等优势,有望突破CO_(2)RR的研究瓶颈,因此备受关注。本文总结了近4年来不同超薄催化剂的合成及其在电催化CO_(2)还原产液体燃料(甲酸、甲醇、乙酸)中的应用,探讨了超薄材料相较于块体材料的优势及其对催化活性、选择性以及反应路径的影响,并针对未来的发展趋势提出一些建议,包括超薄催化剂的合成方法学、作为载体的潜力、机理分析和机器学习。  相似文献   

20.
王大伟  李晔  巨乐章  朱安安 《材料工程》2022,50(10):118-127
为改善碳纤维增强复合材料(CFRP)胶接界面力学性能,采用低温氧气等离子体处理设备对CFRP进行表面处理。利用接触角测量仪、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)对CFRP表面润湿性、表面能、表面形貌、表面化学组分等进行表征,通过双悬臂梁实验(DCB)对CFRP胶接界面力学性能进行研究。结果表明:随氧气等离子体处理时间从0 s增加至30 s,表面水接触角从97°降至29°,CFRP表面润湿性达到最佳,极性分量占比显著增多;随处理时间的增加,CFRP表面粗糙度和最大高低差降低,形成较多谷峰分布的纳米级沟壑,基体表面积增大;同时,表面C—O和C■O等含氧极性官能团含量明显增加,C—C/C—H和Si—C官能团含量减少,表面污染物得到有效清除和转化;与未处理相比,经氧气等离子体处理20 s后,CFRP胶接界面最大剥离载荷和Ⅰ型断裂韧度分别提高了1.01倍(62.73 N)和1.92倍(649.21 J/m 2)。研究发现,氧气等离子体处理可以显著改善CFRP表面物理化学特性,有利于CFRP与胶黏剂更好的黏结,提高胶接界面剥离强度与韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号