首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indexing without invariants in 3D object recognition   总被引:1,自引:0,他引:1  
We present a method of indexing 3D objects from single 2D images. The method does not rely on invariant features. This allows a richer set of shape information to be used in the recognition process. We also suggest the kd-tree as an alternative indexing data structure to the standard hash table. This makes hypothesis recovery more efficient in high-dimensional spaces, which are necessary to achieve specificity in large model databases. Search efficiency is maintained in these regimes by the use of best-bin first search. Neighbors recovered from the index are used to generate probability estimates, local within the feature space, which are then used to rank hypotheses for verification. On average, the ranking process greatly reduces the number of verifications required. Our approach is general in that it can be applied to any real-valued feature vector. In addition, it is straightforward to add to our index information from real images regarding the true probability distributions of the feature groupings used for indexing  相似文献   

2.
3.
Traditional approaches to three dimensional object recognition exploit the relationship between three dimensional object geometry and two dimensional image geometry. The capability of object recognition systems can be improved by also incorporating information about the color of object surfaces. Using physical models for image formation, the authors derive invariants of local color pixel distributions that are independent of viewpoint and the configuration, intensity, and spectral content of the scene illumination. These invariants capture information about the distribution of spectral reflectance which is intrinsic to a surface and thereby provide substantial discriminatory power for identifying a wide range of surfaces including many textured surfaces. These invariants can be computed efficiently from color image regions without requiring any form of segmentation. The authors have implemented an object recognition system that indexes into a database of models using the invariants and that uses associated geometric information for hypothesis verification and pose estimation. The approach to recognition is based on the computation of local invariants and is therefore relatively insensitive to occlusion. The authors present several examples demonstrating the system's ability to recognize model objects in cluttered scenes independent of object configuration and scene illumination. The discriminatory power of the invariants has been demonstrated by the system's ability to process a large set of regions over complex scenes without generating false hypotheses  相似文献   

4.
Geometric invariants and object recognition   总被引:10,自引:4,他引:6  
  相似文献   

5.
Dyadic wavelet transform has been used to derive affine invariant functions. The invariant functions are based on the dyadic wavelet transform of the object boundary. Three invariant functions have been calculated using different numbers of dyadic levels. Experimental results show that these invariant functions outperform some traditional invariant functions. The stability of these invariant functions have been tested for a large perspective transformation.  相似文献   

6.
Some objects in specific poses cannot be distinguished using a single view. A model is proposed and developed for 3D object recognition based on multiple-views; it was applied on hand postures recognition. A pulse-coupled neural network is used to generate features vector for single view. Two views with different view angles are used; each view generates its features’ vector. The two 2D-vectors are then linearly combined into one 3D vector. The hand postures are then combined to construct a dynamic gesture (word). The reconstruction is performed using best-match search algorithm. The experiment was conducted on 50 words and the result was 96% recognition accuracy confirming objects dataset offline extendibility.  相似文献   

7.
BONSAI, a model-based 3D object recognition system, is described. It identifies and localizes 3D objects in range images of one or more parts that have been designed on a computer-aided-design (CAD) system. Recognition is performed via constrained search of the interpretation tree, using unary and binary constraints (derived automatically from the CAD models) to prune the search space. Attention is focused on the recognition procedure, but the model-building, image acquisition, and segmentation procedures are also outlined. Experiments with over 200 images demonstrate that the constrained search approach to 3D object recognition has an accuracy comparable to that of previous systems  相似文献   

8.
Recent hardware technologies have enabled acquisition of 3D point clouds from real world scenes in real time. A variety of interactive applications with the 3D world can be developed on top of this new technological scenario. However, a main problem that still remains is that most processing techniques for such 3D point clouds are computationally intensive, requiring optimized approaches to handle such images, especially when real time performance is required. As a possible solution, we propose the use of a 3D moving fovea based on a multiresolution technique that processes parts of the acquired scene using multiple levels of resolution. Such approach can be used to identify objects in point clouds with efficient timing. Experiments show that the use of the moving fovea shows a seven fold performance gain in processing time while keeping 91.6% of true recognition rate in comparison with state-of-the-art 3D object recognition methods.  相似文献   

9.
Computer vision has been extensively adopted in industry for the last two decades. It enhances productivity and quality management, and is flexibility, efficient, fast, inexpensive, reliable and robust. This study presents a new translation, rotation and scaling-free object recognition method for 2D objects. The proposed method comprises two parts: KRA feature extractor and GRA classifier. The KRA feature extractor employs K-curvature, re-sampling, and autocorrelation transformation to extract unique features of objects, and then gray relational analysis (GRA) classifies the extracted invariant features. The boundary of the digital object was first represented as the form of the K-curvature over a given region of support, and was then re-sampled and transformed with autocorrelation function. After that, the extracted features own the unique property that is invariant to translation, rotation and scaling. To verify and validate the proposed method, 50 synthetic and 50 real objects were digitized as standard patterns, and 10 extra images of each object (test images) which were taken at different positions, orientations and scales, were acquired and compared with the standard patterns. The experimental results reveal that the proposed method with either GRA or MD methods is effective and reliable for part recognition.  相似文献   

10.
11.
Geometric and illumination invariants for object recognition   总被引:1,自引:0,他引:1  
We propose invariant formulations that can potentially be combined into a single system. In particular, we describe a framework for computing invariant features which are insensitive to rigid motion, affine transform, changes of parameterization and scene illumination, perspective transform, and view point change. This is unlike most current research on image invariants which concentrates on either geometric or illumination invariants exclusively. The formulations are widely applicable to many popular basis representations, such as wavelets, short-time Fourier analysis, and splines. Exploiting formulations that examine information about shape and color at different resolution levels, the new approach is neither strictly global nor local. It enables a quasi-localized, hierarchical shape analysis which is rarely found in other known invariant techniques, such as global invariants. Furthermore, it does not require estimating high-order derivatives in computing invariants (unlike local invariants), whence is more robust. We provide results of numerous experiments on both synthetic and real data to demonstrate the validity and flexibility of the proposed framework  相似文献   

12.
Geometric hashing (GH) and partial pose clustering are well-known algorithms for pattern recognition. However, the performance of both these algorithms degrades rapidly with an increase in scene clutter and the measurement uncertainty in the detected features. The primary contribution of this paper is the formulation of a framework that unifies the GH and the partial pose clustering paradigms for pattern recognition in cluttered scenes. The proposed scheme has a better discrimination capability as compared to the GA algorithm, thus improving recognition accuracy. The scheme is incorporated in a Bayesian MLE framework to make it robust to the presence of sensor noise. It is able to handle partial occlusions, is robust to measurement uncertainty in the data features and to the presence of spurious scene features (scene clutter). An efficient hash table representation of 3D features extracted from range images is also proposed. Simulations with real and synthetic 2D/3D objects show that the scheme performs better than the GH algorithm in scenes with a large amount of clutter.  相似文献   

13.
张桂梅  章毅 《计算机应用研究》2013,30(11):3483-3487
骨架能更有效地反映出目标的拓扑结构和细节变化, 因而在三维目标识别中得到广泛应用, 但存在的基于骨架的识别方法均要求骨架端点位于轮廓曲线上, 并且识别精度受骨架端点排序的影响。针对该问题, 提出了一种新的基于路径轮廓的三维目标识别算法。该算法首先定义了一种新的特征点——骨切点, 并根据骨切点在轮廓曲线上的顺序关系, 对骨架端点进行排序; 然后利用路径轮廓对目标轮廓进行分割; 再构造一种新的局部不变特征, 并结合hash表以识别三维目标。实验结果表明, 该算法对存在部分遮挡或缺损的三维目标仍有较好的识别效果。  相似文献   

14.
3D local shapes are a critical cue for object recognition in 3D point clouds. This paper presents an instance-based 3D object recognition method via informative and discriminative shape primitives. We propose a shape primitive model that measures geometrical informativity and discriminativity of 3D local shapes of an object. Discriminative shape primitives of the object are extracted automatically by model parameter optimization. We achieve object recognition from 2.5/3D scenes via shape primitive classification and recover the 3D poses of the identified objects simultaneously. The effectiveness and the robustness of the proposed method were verified on popular instance-based 3D object recognition datasets. The experimental results show that the proposed method outperforms some existing instance-based 3D object recognition pipelines in the presence of noise, varying resolutions, clutter and occlusion.  相似文献   

15.
Xiao  Zhengtao  Gao  Jian  Wu  Dongqing  Zhang  Lanyu  Chen  Xin 《Multimedia Tools and Applications》2020,79(39-40):29305-29325
Multimedia Tools and Applications - The point pair feature (PPF) algorithm is one of the best-performing 3D object recognition algorithms. However, the high dimensionality of its search space is a...  相似文献   

16.
We treat the use of more complex higher degree polynomial curves and surfaces of degree higher than 2, which have many desirable properties for object recognition and position estimation, and attack the instability problem arising in their use with partial and noisy data. The scenario discussed in this paper is one where we have a set of objects that are modeled as implicit polynomial functions, or a set of representations of classes of objects with each object in a class modeled as an implicit polynomial function, stored in the database. Then, given partial data from one of the objects, we want to recognize the object (or the object class) or collect more data in order to get better parameter estimates for more reliable recognition. Two problems arising in this scenario are discussed: 1) the problem of recognizing these polynomials by comparing them in terms of their coefficients; and 2) the problem of where to collect data so as to improve the parameter estimates as quickly as possible. We use an asymptotic Bayesian approximation for solving the two problems. The intrinsic dimensionality of polynomials and the use of the Mahalanobis distance are discussed  相似文献   

17.
zero-shot learning是对没有训练样本的类别进行分类的问题。传统回归方法的核心是将视觉特征投影到语义空间,没有充分利用视觉特征自身包含的样本信息,同时训练计算量大。本文提出基于反向投影的ZSL目标分类方法,将类别原型投影到视觉空间,利用视觉特征的语义性学习出映射函数,参数优化过程仅通过解析解就可以获得。在两个基准数据集的实验结果表明,我们提出的反向投影方法分类结果较传统回归方法和其他现有方法有大幅提升,且训练时间大大减少,我们的方法可以更好推广到未知类别的分类问题上。  相似文献   

18.
Support vector machines for 3D object recognition   总被引:38,自引:0,他引:38  
Support vector machines (SVMs) have been recently proposed as a new technique for pattern recognition. Intuitively, given a set of points which belong to either of two classes, a linear SVM finds the hyperplane leaving the largest possible fraction of points of the same class on the same side, while maximizing the distance of either class from the hyperplane. The hyperplane is determined by a subset of the points of the two classes, named support vectors, and has a number of interesting theoretical properties. In this paper, we use linear SVMs for 3D object recognition. We illustrate the potential of SVMs on a database of 7200 images of 100 different objects. The proposed system does not require feature extraction and performs recognition on images regarded as points of a space of high dimension without estimating pose. The excellent recognition rates achieved in all the performed experiments indicate that SVMs are well-suited for aspect-based recognition  相似文献   

19.
3D free-form surface registration and object recognition   总被引:8,自引:1,他引:7  
A new technique to recognise 3D free-form objects via registration is proposed. This technique attempts to register a free-form surface, represented by a set of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala% aabaGaaGymaaqaaiaaikdaaaGaamiraaaa!38F8!\[2\frac{1}{2}D\] sensed data points, to the model surface, represented by another set of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala% aabaGaaGymaaqaaiaaikdaaaGaamiraaaa!38F8!\[2\frac{1}{2}D\] model data points, without prior knowledge of correspondence or view points between the two point sets. With an initial assumption that the sensed surface be part of a more complete model surface, the algorithm begins by selecting three dispersed, reliable points on the sensed surface. To find the three corresponding model points, the method uses the principal curvatures and the Darboux frames to restrict the search over the model space. Invariably, many possible model 3-typles will be found. For each hypothesized model 3-tuple, the transformation to match the sensed 3-tuple to the model 3-tuple can be determined. A heuristic search is proposed to single out the optimal transformation in low order time. For realistic object recognition or registration, where the two range images are often extracted from different view points of the model, the earlier assumption that the sensed surface be part of a more complete model surface cannot be relied on. With this, the sensed 3-tuple must be chosen such that the three sensed points lie on the common region visible to both the sensed and model views. We propose an algorithm to select a minimal non-redundant set of 3-tuples such that at least one of the 3-tuples will lie on the overlap. Applying the previous algorithm to each 3-tuple within this set, the optimal transformation can be determined. Experiments using data obtained from a range finder have indicated fast registration for relatively complex test cases. If the optimal registrations between the sensed data (candidate) and each of a set of model data are found, then, for 3D object recognition purposes, the minimal best fit error can be used as the decision rule.  相似文献   

20.
An effective object recognition scheme is to represent and match images on the basis of histograms derived from photometric color invariants. A drawback, however, is that certain color invariant values become very unstable in the presence of sensor noise. To suppress the effect of noise for unstable color invariant values, in this paper, histograms are computed by variable kernel density estimators. To apply variable kernel density estimation in a principled way, models are proposed for the propagation of sensor noise through color invariant variables. As a result, the associated uncertainty is obtained for each color invariant value. The associated uncertainty is used to derive the parameterization of the variable kernel for the purpose of robust histogram construction. It is empirically verified that the proposed density estimator compares favorably to traditional histogram schemes for the purpose of object recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号