共查询到20条相似文献,搜索用时 0 毫秒
1.
Indexing without invariants in 3D object recognition 总被引:1,自引:0,他引:1
Beis J.S. Lowe D.G. 《IEEE transactions on pattern analysis and machine intelligence》1999,21(10):1000-1015
We present a method of indexing 3D objects from single 2D images. The method does not rely on invariant features. This allows a richer set of shape information to be used in the recognition process. We also suggest the kd-tree as an alternative indexing data structure to the standard hash table. This makes hypothesis recovery more efficient in high-dimensional spaces, which are necessary to achieve specificity in large model databases. Search efficiency is maintained in these regimes by the use of best-bin first search. Neighbors recovered from the index are used to generate probability estimates, local within the feature space, which are then used to rank hypotheses for verification. On average, the ranking process greatly reduces the number of verifications required. Our approach is general in that it can be applied to any real-valued feature vector. In addition, it is straightforward to add to our index information from real images regarding the true probability distributions of the feature groupings used for indexing 相似文献
2.
3.
Slater D. Healey G. 《IEEE transactions on pattern analysis and machine intelligence》1996,18(2):206-210
Traditional approaches to three dimensional object recognition exploit the relationship between three dimensional object geometry and two dimensional image geometry. The capability of object recognition systems can be improved by also incorporating information about the color of object surfaces. Using physical models for image formation, the authors derive invariants of local color pixel distributions that are independent of viewpoint and the configuration, intensity, and spectral content of the scene illumination. These invariants capture information about the distribution of spectral reflectance which is intrinsic to a surface and thereby provide substantial discriminatory power for identifying a wide range of surfaces including many textured surfaces. These invariants can be computed efficiently from color image regions without requiring any form of segmentation. The authors have implemented an object recognition system that indexes into a database of models using the invariants and that uses associated geometric information for hypothesis verification and pose estimation. The approach to recognition is based on the computation of local invariants and is therefore relatively insensitive to occlusion. The authors present several examples demonstrating the system's ability to recognize model objects in cluttered scenes independent of object configuration and scene illumination. The discriminatory power of the invariants has been demonstrated by the system's ability to process a large set of regions over complex scenes without generating false hypotheses 相似文献
4.
Geometric invariants and object recognition 总被引:6,自引:4,他引:6
Isaac Weiss 《International Journal of Computer Vision》1993,10(3):207-231
5.
Rafael Beserra Gomes Bruno Marques Ferreira da Silva Lourena Karin de Medeiros Rocha Rafael Vidal Aroca Luiz Carlos Pacheco Rodrigues Velho Luiz Marcos Garcia Gonçalves 《Computers & Graphics》2013,37(5):496-508
Recent hardware technologies have enabled acquisition of 3D point clouds from real world scenes in real time. A variety of interactive applications with the 3D world can be developed on top of this new technological scenario. However, a main problem that still remains is that most processing techniques for such 3D point clouds are computationally intensive, requiring optimized approaches to handle such images, especially when real time performance is required. As a possible solution, we propose the use of a 3D moving fovea based on a multiresolution technique that processes parts of the acquired scene using multiple levels of resolution. Such approach can be used to identify objects in point clouds with efficient timing. Experiments show that the use of the moving fovea shows a seven fold performance gain in processing time while keeping 91.6% of true recognition rate in comparison with state-of-the-art 3D object recognition methods. 相似文献
6.
Flynn P.J. Jain A.K. 《IEEE transactions on pattern analysis and machine intelligence》1991,13(10):1066-1075
BONSAI, a model-based 3D object recognition system, is described. It identifies and localizes 3D objects in range images of one or more parts that have been designed on a computer-aided-design (CAD) system. Recognition is performed via constrained search of the interpretation tree, using unary and binary constraints (derived automatically from the CAD models) to prune the search space. Attention is focused on the recognition procedure, but the model-building, image acquisition, and segmentation procedures are also outlined. Experiments with over 200 images demonstrate that the constrained search approach to 3D object recognition has an accuracy comparable to that of previous systems 相似文献
7.
Te-Hsiu Sun Horng-Chyi Horng Chi-Shuan Liu Fang-Chin Tien 《Expert systems with applications》2009,36(9):11517-11527
Computer vision has been extensively adopted in industry for the last two decades. It enhances productivity and quality management, and is flexibility, efficient, fast, inexpensive, reliable and robust. This study presents a new translation, rotation and scaling-free object recognition method for 2D objects. The proposed method comprises two parts: KRA feature extractor and GRA classifier. The KRA feature extractor employs K-curvature, re-sampling, and autocorrelation transformation to extract unique features of objects, and then gray relational analysis (GRA) classifies the extracted invariant features. The boundary of the digital object was first represented as the form of the K-curvature over a given region of support, and was then re-sampled and transformed with autocorrelation function. After that, the extracted features own the unique property that is invariant to translation, rotation and scaling. To verify and validate the proposed method, 50 synthetic and 50 real objects were digitized as standard patterns, and 10 extra images of each object (test images) which were taken at different positions, orientations and scales, were acquired and compared with the standard patterns. The experimental results reveal that the proposed method with either GRA or MD methods is effective and reliable for part recognition. 相似文献
8.
Geometric and illumination invariants for object recognition 总被引:1,自引:0,他引:1
Alferez R. Yuan-Fang Wang 《IEEE transactions on pattern analysis and machine intelligence》1999,21(6):505-536
We propose invariant formulations that can potentially be combined into a single system. In particular, we describe a framework for computing invariant features which are insensitive to rigid motion, affine transform, changes of parameterization and scene illumination, perspective transform, and view point change. This is unlike most current research on image invariants which concentrates on either geometric or illumination invariants exclusively. The formulations are widely applicable to many popular basis representations, such as wavelets, short-time Fourier analysis, and splines. Exploiting formulations that examine information about shape and color at different resolution levels, the new approach is neither strictly global nor local. It enables a quasi-localized, hierarchical shape analysis which is rarely found in other known invariant techniques, such as global invariants. Furthermore, it does not require estimating high-order derivatives in computing invariants (unlike local invariants), whence is more robust. We provide results of numerous experiments on both synthetic and real data to demonstrate the validity and flexibility of the proposed framework 相似文献
9.
Geometric hashing (GH) and partial pose clustering are well-known algorithms for pattern recognition. However, the performance of both these algorithms degrades rapidly with an increase in scene clutter and the measurement uncertainty in the detected features. The primary contribution of this paper is the formulation of a framework that unifies the GH and the partial pose clustering paradigms for pattern recognition in cluttered scenes. The proposed scheme has a better discrimination capability as compared to the GA algorithm, thus improving recognition accuracy. The scheme is incorporated in a Bayesian MLE framework to make it robust to the presence of sensor noise. It is able to handle partial occlusions, is robust to measurement uncertainty in the data features and to the presence of spurious scene features (scene clutter). An efficient hash table representation of 3D features extracted from range images is also proposed. Simulations with real and synthetic 2D/3D objects show that the scheme performs better than the GH algorithm in scenes with a large amount of clutter. 相似文献
10.
3D local shapes are a critical cue for object recognition in 3D point clouds. This paper presents an instance-based 3D object recognition method via informative and discriminative shape primitives. We propose a shape primitive model that measures geometrical informativity and discriminativity of 3D local shapes of an object. Discriminative shape primitives of the object are extracted automatically by model parameter optimization. We achieve object recognition from 2.5/3D scenes via shape primitive classification and recover the 3D poses of the identified objects simultaneously. The effectiveness and the robustness of the proposed method were verified on popular instance-based 3D object recognition datasets. The experimental results show that the proposed method outperforms some existing instance-based 3D object recognition pipelines in the presence of noise, varying resolutions, clutter and occlusion. 相似文献
11.
Xiao Zhengtao Gao Jian Wu Dongqing Zhang Lanyu Chen Xin 《Multimedia Tools and Applications》2020,79(39-40):29305-29325
Multimedia Tools and Applications - The point pair feature (PPF) algorithm is one of the best-performing 3D object recognition algorithms. However, the high dimensionality of its search space is a... 相似文献
12.
Subrahmonia J. Cooper D.B. Keren D. 《IEEE transactions on pattern analysis and machine intelligence》1996,18(5):505-519
We treat the use of more complex higher degree polynomial curves and surfaces of degree higher than 2, which have many desirable properties for object recognition and position estimation, and attack the instability problem arising in their use with partial and noisy data. The scenario discussed in this paper is one where we have a set of objects that are modeled as implicit polynomial functions, or a set of representations of classes of objects with each object in a class modeled as an implicit polynomial function, stored in the database. Then, given partial data from one of the objects, we want to recognize the object (or the object class) or collect more data in order to get better parameter estimates for more reliable recognition. Two problems arising in this scenario are discussed: 1) the problem of recognizing these polynomials by comparing them in terms of their coefficients; and 2) the problem of where to collect data so as to improve the parameter estimates as quickly as possible. We use an asymptotic Bayesian approximation for solving the two problems. The intrinsic dimensionality of polynomials and the use of the Mahalanobis distance are discussed 相似文献
13.
Support vector machines for 3D object recognition 总被引:38,自引:0,他引:38
Pontil M. Verri A. 《IEEE transactions on pattern analysis and machine intelligence》1998,20(6):637-646
Support vector machines (SVMs) have been recently proposed as a new technique for pattern recognition. Intuitively, given a set of points which belong to either of two classes, a linear SVM finds the hyperplane leaving the largest possible fraction of points of the same class on the same side, while maximizing the distance of either class from the hyperplane. The hyperplane is determined by a subset of the points of the two classes, named support vectors, and has a number of interesting theoretical properties. In this paper, we use linear SVMs for 3D object recognition. We illustrate the potential of SVMs on a database of 7200 images of 100 different objects. The proposed system does not require feature extraction and performs recognition on images regarded as points of a space of high dimension without estimating pose. The excellent recognition rates achieved in all the performed experiments indicate that SVMs are well-suited for aspect-based recognition 相似文献
14.
3D free-form surface registration and object recognition 总被引:7,自引:1,他引:7
A new technique to recognise 3D free-form objects via registration is proposed. This technique attempts to register a free-form surface, represented by a set of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala% aabaGaaGymaaqaaiaaikdaaaGaamiraaaa!38F8!\[2\frac{1}{2}D\] sensed data points, to the model surface, represented by another set of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala% aabaGaaGymaaqaaiaaikdaaaGaamiraaaa!38F8!\[2\frac{1}{2}D\] model data points, without prior knowledge of correspondence or view points between the two point sets. With an initial assumption that the sensed surface be part of a more complete model surface, the algorithm begins by selecting three dispersed, reliable points on the sensed surface. To find the three corresponding model points, the method uses the principal curvatures and the Darboux frames to restrict the search over the model space. Invariably, many possible model 3-typles will be found. For each hypothesized model 3-tuple, the transformation to match the sensed 3-tuple to the model 3-tuple can be determined. A heuristic search is proposed to single out the optimal transformation in low order time. For realistic object recognition or registration, where the two range images are often extracted from different view points of the model, the earlier assumption that the sensed surface be part of a more complete model surface cannot be relied on. With this, the sensed 3-tuple must be chosen such that the three sensed points lie on the common region visible to both the sensed and model views. We propose an algorithm to select a minimal non-redundant set of 3-tuples such that at least one of the 3-tuples will lie on the overlap. Applying the previous algorithm to each 3-tuple within this set, the optimal transformation can be determined. Experiments using data obtained from a range finder have indicated fast registration for relatively complex test cases. If the optimal registrations between the sensed data (candidate) and each of a set of model data are found, then, for 3D object recognition purposes, the minimal best fit error can be used as the decision rule. 相似文献
15.
Gevers T Stokman H 《IEEE transactions on pattern analysis and machine intelligence》2004,26(1):113-118
An effective object recognition scheme is to represent and match images on the basis of histograms derived from photometric color invariants. A drawback, however, is that certain color invariant values become very unstable in the presence of sensor noise. To suppress the effect of noise for unstable color invariant values, in this paper, histograms are computed by variable kernel density estimators. To apply variable kernel density estimation in a principled way, models are proposed for the propagation of sensor noise through color invariant variables. As a result, the associated uncertainty is obtained for each color invariant value. The associated uncertainty is used to derive the parameterization of the variable kernel for the purpose of robust histogram construction. It is empirically verified that the proposed density estimator compares favorably to traditional histogram schemes for the purpose of object recognition. 相似文献
16.
Scalability is an important issue in object recognition as it reduces database storage and recognition time. In this paper, we propose a new scalable 3D object representation and a learning method to recognize many everyday objects. The key proposal for scalable object representation is to combine the concept of feature sharing with multi-view clustering in part-based object representation, in particular a common-frame constellation model (CFCM). In this representation scheme, we also propose a fully automatic learning method: appearance-based automatic feature clustering and sequential construction of clustered CFCMs from labeled multi-views and multiple objects. We evaluated the scalability of the proposed method to COIL-100 DB and applied the learning scheme to 112 objects with 620 training views. Experimental results show the scalable learning results in almost constant recognition performance relative to the number of objects. 相似文献
17.
Structural indexing: efficient 2D object recognition 总被引:2,自引:0,他引:2
Stein F. Medioni G. 《IEEE transactions on pattern analysis and machine intelligence》1992,14(12):1198-1204
The problem of recognition of multiple flat objects in a cluttered environment from an arbitrary viewpoint is addressed. The models are acquired automatically and approximated by polygons with multiple line tolerances for robustness. Groups of consecutive segments (super segments) are then encoded and entered into a table. This provides the essential mechanism for indexing and fast retrieval. Once the database of all models is built, the recognition proceeds by segmenting the scene into a polygonal approximation; the code for each super segment retrieves model hypotheses from the table. Hypotheses are clustered if they are mutually consistent and represent the instance of a model. Finally, the estimate of the transformation is refined. This methodology makes it possible to recognize models despite noise, occlusion, scale rotation translation, and a restricted range of weak perspective. A complexity bound is obtained 相似文献
18.
3D object segmentation is important in computer vision such as target detection in biomedical image analysis. A new method, called B-Surface algorithm, is generated for 3D object segmentation. An improved 3D external force field combined with the normalized GVF is utilized. After the initialization of a surface model near the target, B-Surface starts to deform to locate the boundary of the object. First, it overcomes the difficulty that comes from analyzing 3D volume image slice by slice. And the speed of B-Surface deformation is enhanced since the internal forces are not needed to compute in every iteration deformation step. Next, the normal at every surface point can be calculated easily since B-Surface is a continuous deformable model. And it has the ability to achieve high compression ratio (ratio of data to parameters) by presenting the whole surface with only a relatively small number of control points. Experimental results and analysis are presented in this paper. We can see that the B-Surface algorithm can find the surface of the target efficiently. 相似文献
19.
20.
S. Carlsson R. Mohr T. Moons L. Morin C. Rothwell M. Van Diest L. Van Gool F. Veillon A. Zisserman 《International Journal of Computer Vision》1996,19(3):211-236
Recently, several methods have been proposed for describing plane, non-algebraic curves in a projectively invariant fashion. These curve representations are invariant under changes in viewpoint and therefore ideally suited for recognition.We report the results of a study where the strengths and weaknesses of a number of semi-local methods are compared on the basis of the same images and edge data. All the methods define a distinguished or canonical projective frame for the curve segment which is used for projective normalisation. In this canonical frame the curve has a viewpoint invariant signature. Measurements on the signature are invariants. All the methods presented are designed to work on real images where extracted data will not be ideal, and parts of curves will be missing because of poor contrast or occlusion.We compare the stability and discrimination of the signatures and invariants over a number of example curves and viewpoints. The paper concludes with a discussion of how the various methods can be integrated within a recognition system.Postdoctoral Research Fellow of the Belgian National Fund for Scientific Research (N.F.W.O.). 相似文献