首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite rapid progress in the physical characterization of murine and human genomes, little molecular information is available on certain regions, e.g., proximal mouse chromosome 11 (Chr 11) and human chromosome 2p (Chr 2p). We have localized the wobbler spinal atrophy gene wr to proximal mouse Chr 11, tightly linked to Rab1, a gene coding for a small GTP-binding protein, and Glnsps1, an intronless pseudogene of the glutamine synthetase gene. We have now used these markers to construct a 1.3-Mb yeast artificial chromosome (YAC) contig of the Rab1 region on mouse Chr 11. Four YAC clones isolated from two independent YAC libraries were characterized by rare-cutting analysis, fluorescence in situ hybridization (FISH), and sequence-tagged site (STS) isolation and mapping. Rab1 and Glns-ps1 were found to be only 200 kb apart. A potential CpG island near a methylated NarI site and a trapped exon, ETG1.1, were found between these loci, and a new STS, AHY1.1, was found over 250 kb from Rab1. Two overlapping YACs were identified that contained a 150-kb region of human Chr 2p, comprising the RAB1 locus, AHY1.1, and the human homologue of ETG1.1, indicating a high degree of conservation of this region in the two species. We mapped AHY1.1 and thus human RAB1 on Chr 2p13.4-p14 using somatic cell hybrids and a radiation hybrid panel, thus extending a known region of conserved synteny between mouse Chr 11 and human Chr 2p. Recently, the gene LMGMD2B for a human recessive neuromuscular disease, limb girdle muscular dystrophy type 2B, has been mapped to 2p13-p16. The conservation between the mouse Rab1 and human RAB1 regions will be helpful in identifying candidate genes for the wobbler spinal muscular atrophy and in clarifying a possible relationship between wr and LMGMD2B.  相似文献   

2.
By means of somatic cell hybrids segregating rat chromosomes, we determined the chromosome localization of three rat genes of the Jun family: Junb (Chr 19), Jun (=c-Jun) (Chr 5) and Jund (Chr 16). The Jun gene was also localized to the 5q31-33 region by fluorescence in situ hybridization. These rat gene assignments reveal two new homologies with mouse and human chromosomes, and provide a new example of synteny conserved in the human and a rodent species (the mouse), but split between the two rodent species.  相似文献   

3.
STIM1 (GOK) maps to a region of human Chromosome (Chr) 11p15.5 that is implicated in several embryonal tumors, and some evidence indicates that STIM1 may have a growth suppressor role in rhabdomyosarcoma. In this study we have mapped the murine homolog, Stim1, to the same position as Hbb on distal mouse Chr 7. This region is separated by 20 cM from the region of distal Chr 7 that contains Igf2, H19, and other imprinted genes. Using strain-specific polymorphisms, we have shown that Stim1 is expressed from both parental alleles in fetal and neonatal mouse tissues. Similar analyses of human Wilms' tumor and normal kidney tissues demonstrated biallelic expression of STIM1 in the majority of samples. These data demonstrate that Stim1 expression is not regulated by genomic imprinting in either mouse or human tissues. Thus, if STIM1 is a tumor suppressor at 11p15.5, loss of expression is not due to imprinting effects.  相似文献   

4.
Rbt (Rabo torcido) is a new semidominant mouse mutant with a variety of skeletal abnormalities. Heterozygous Rbt mutants display homeotic anteroposterior patterning problems along the axial skeleton that resemble Polycomb group and trithorax gene mutations. In addition, the Rbt mutant displays strong similarities to the phenotype observed in Ts (Tail-short), indicating also a homeotically transformed phenotype in these mice. We have mapped the Rbt locus to an interval of approximately 6 cM on mouse Chromosome (Chr) 11 between microsatellite markers D11Mit128 and D11Mit103. The Ts locus was mapped within a shorter interval of approximately 3 cM between D11Mit128 and D11Mit203. This indicates that Rbt and Ts may be allelic mutations. Sox9, the human homolog of which is responsible for the skeletal malformation syndrome campomelic dysplasia, was mapped proximal to D11Mit128. It is, therefore, unlikely that Ts and Rbt are mouse models for this human skeletal disorder.  相似文献   

5.
To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2. Two PLC genes, Plcd1 and Plcg2, mapped to distinct sites on Chr 8. We mapped the human homologs of eight of these genes to six chromosomes by analysis of human x rodent somatic cell hybrids. The map locations of seven of these genes were consistent with previously defined regions of conserved synteny; Plcd1 defines a new region of homology between human Chr 3 and mouse Chr 8.  相似文献   

6.
The nucleotide sequences of the NOD and C57BL/6J alleles of Glut-2, Sod-2, and Il-2 were determined by RT-PCR sequencing. Each of these loci is located in intervals that strongly correlated with susceptibility to diabetes in an (NOD/Uf x C57BL/6J)F1 x NOD/Uf backcross. No significant variations in the alleles of Glut-2 at 16 cM on Chromosome (Chr) 3 or Sod-2 at 8 cM on Chr 17 were detected. However, the Il-2 allele in NOD at 20 cM on Chr 3 was found to differ from that in C57BL/6J by a complex mutation involving the contraction of a simple sequence repeat (SSR). Il-2 in NOD differs from the allele in C57BL/6J via a complex mutation involving a deletion of four CAG codons from the SSR together with a length-compensatory four-codon duplication of a segment 5' from the SSR. Two nonsynonymous mutations in the coding region 5' to the SSR were also detected. Only these two allelic forms of Il-2 were detected in a survey of 13 standard inbred lines and 4 wild mouse strains. We propose to designate these alleles as Il-2a (for alleles such as C57BL/6J that contain 12 CAG repeats) and Il-2b (for alleles such as NOD), which occurred in a variety of standard inbred strains and in all four wild Mus musculus domesticus tested. The distribution of these Il-2 alleles among inbred strains correlated with the detection of Chr 3 as an interval effecting diabetes susceptibility in three separate genetic crosses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mouse gene Punc encodes a member of the immunoglobulin superfamily of cell surface proteins. It is highly expressed in the developing embryo in nervous system and limb buds. At mid-gestation, however, expression levels of Punc decrease sharply. To allow investigation of such a regulatory mechanism, the genomic locus encompassing the Punc gene was cloned, characterized, and mapped. Fluorescent in situ hybridization was used to determine the chromosomal location of the Punc gene of mouse and human. Mouse Punc maps to Chromosome (Chr) 9 in the region D-E1, whereas the human PUNC gene is localized to Chr 15 at 15q22.3-23, a region known to be syntenic to mouse 9D-E1. The human PUNC gene therefore maps close to a genetic locus that is linked to Bardet-Biedl Syndrome, an autosomal recessive human disorder. Confirmation for the location of human PUNC was obtained through sequence relationships between mouse Punc cDNA, human PUNC cDNA, genomic sequence upstream of the murine Punc gene, and human STS markers that had been previously mapped on Chr 15. The STS sequence WI-14920 is in fact derived from the 3'-untranslated region of the human PUNC gene. WI-14920 had been placed at 228cR from the top of the Chr 15 linkage group, which provided positional information for the human PUNC gene at high resolution. Thus, this study identifies PUNC as the gene corresponding to a previously anonymous marker and serves as a basis to investigate its role in genetic disorders.  相似文献   

8.
Rab proteins are small GTP-ases localized to distinct membrane compartments in eukaryotic cells and regulating specific steps of intracellular vesicular membrane traffic. The Rab7 protein is localized to the late endosomal compartment and controls late steps of endocytosis. We have isolated, by library screening, the 5' region, including the promoter, of the mouse Rab7 gene and a Rab7 pseudogene. We have mapped, by genetic linkage analysis, the mouse Rab7 gene on Chromosome (Chr) 6 and the Rab7-ps1 pseudogene on Chr 9, where the Rab7 gene has been previously reported to map. By radiation hybrid mapping, we have located the human RAB7 gene on Chr 3, in a region homologous to the mouse Chr 6, where the Rab7 gene maps.  相似文献   

9.
The gene for alpha-stimulating guanine-nucleotide binding polypeptide, Gnas, has been considered as a candidate for the imprinting effects ascribed to distal mouse Chromosome (Chr) 2. Its human homologue (GNAS1) appears, from clinical and biochemical studies of patients with Albright hereditary osteodystrophy, to be paternally imprinted. GNAS1 maps to 20q13, a region that shows linkage conservation with distal mouse Chr 2. We have mapped Gnas within the imprinting region on distal Chr 2 by linkage analysis. To establish if Gnas is imprinted, we have looked for expression differences in tissues taken from mice carrying maternal duplication/paternal deficiency for distal Chr 2 (MatDp2) and its reciprocal (PatDp2). RNA in situ hybridization revealed high levels of Gnas mRNA in glomeruli of PatDp2 embryos at late gestation and lower levels in glomeruli of MatDp2 embryos. These results strongly suggest that Gnas is maternally imprinted and suggest that the mouse gene may be imprinted in a manner opposite that predicted in human.  相似文献   

10.
We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17.HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome.  相似文献   

11.
Cleft lip with or without cleft palate, CL(P), a common human birth defect, has a genetically complex etiology. An animal model with a similarly complex genetic basis is established in the A/WySn mouse strain, in which 20% of newborns have CL(P). Using a newly created congenic strain, AEJ.A, and SSLP markers, we have mapped a major CL(P)-causing gene derived from the A/WySn strain. This locus, here named clf1 (cleft lip) maps to Chromosome (Chr) 11 to a region having linkage homology with human 17q21-24, supporting reports of association of human CL(P) with the retinoic acid receptor alpha (RARA) locus.  相似文献   

12.
Tctex3 showing restricted expression in male germ cells has been isolated during the process of chromosome walking in the mouse t-complex region. The total sequence of Tctex3 cDNA predicts a protein of 580 amino acids with two C4HC3 type PHD fingers. The region containing this conserved motif is shared among members of the Polycomblike proteins that include the mouse M96 and Drosophila Polycomblike. A partial cDNA for a human homolog of Tctex3, HUTEX3, has also been isolated. Mouse Tctex3 gene was mapped adjacent to Tsc2 gene on mouse Chromosome (Chr) 17, and HUTEX3 was located closely to HSET gene in the HLA class II region of chromosome 6.  相似文献   

13.
In a subset of systemic lupus erythematosus (SLE) patients, antiphospholipid syndrome, characterized by occurrence of anti-cardiolipin (CL) antibodies, thrombocytopenia, thrombosis and recurrent intrauterine fetal death occurs. Male (NZW x BXSB)F1 mice, carrying the BXSB Yaa gene, serve as a model for SLE-associated antiphospholipid syndrome. Using microsatellite markers in the NZW x (NZW x BXSB)F1 backcross male progeny, we mapped BXSB alleles contributing to the generation of anti-CL antibodies, platelet-binding antibodies, thrombocytopenia and myocardial infarction. Generation of each disease character was controlled by two major independently segregating dominant alleles, i.e. those on chromosomes (Chr.) 4 and 17 for anti-CL antibodies, Chr. 8 and 17 for both anti-platelet antibodies and thrombocytopenia and, to our surprise, Chr. 7 and 14 for myocardial infarction, and that a combination of the two alleles appeared to produce full expression of each character, as a complementary gene action. The alleles on Chr. 17 linked to the above three characters were all mapped in close proximity to the H-2 complex. Therefore, no single factor such as anti-CL antibodies can explain the pathogenesis of SLE-associated antiphospholipid syndrome. Rather, a combination of susceptibility alleles such as described here, along with additional modifying loci, i.e. BXSB Yaa and some from NZW, characterizes unique SLE features in male (NZW x BXSB) F1 mice. There are potentially important candidate genes which may be linked to the syndrome.  相似文献   

14.
The genes that determine the baseline hematocrit level in humans and experimental animals are unknown. The spontaneously hypertensive rat (SHR), the most widely used animal model of human essential hypertension, exhibits an increased hematocrit when compared with the normotensive Brown Norway (BN-Lx) strain (0.54 +/- 0.02 vs. 0.44 +/- 0.02, p < 0.01). Distribution of hematocrit values among recombinant inbred (RI) strains derived from SHR and BN-Lx progenitors was continuous, which suggests a polygenic mode of inheritance. The narrow heritability of the hematocrit was estimated to be 0.32. The Eno2 marker on Chromosome (Chr) 4 showed the strongest association (p < 0.0001) with the observed variability of hematocrit among RI strains. The erythropoietin (Epo) gene, originally reported to be syntenic with Eno2, has been mapped to Chr 12, thus excluding it as a potential candidate gene for the increased hematocrit in the SHR. The current linkage data extend homologies between rat, mouse, and human chromosomes.  相似文献   

15.
We evaluated in vivo interactions between extrinsic (growth factor induced) and intrinsic (genetically determined) effectors of mouse primitive hemopoietic stem cell proliferation and numbers. Accordingly, stem cell frequency and cell cycle kinetics were assessed in eight strains of inbred mice using the cobblestone area-forming cell (CAFC) assay. A strong inverse correlation was observed between mouse lifespan and the number of autonomously cycling progenitors (CAFC day 7) in the femur. The population size of primitive stem cells (CAFC day 35) varied widely (up to sevenfold) among strains, unlike total CAFC day 7 numbers (cycling and quiescent), which were similar. Administration of the early acting cytokine flt-3 ligand to these strains resulted in activation of quiescent primitive stem cells exclusively in strains with high endogenous stem cell numbers (DBA and AKR), but was unrelated to strain-specific progenitor cell cycling. To map loci affecting stem cell frequency, we quantified stem cells in BXD recombinant inbred mice (offspring of C57BL/6 and DBA/2). The resulting strain distribution pattern showed high concordance with a marker that mapped to chromosome 18 (19 cM). Linkage with this genomic interval was associated with a likelihood of odds score of 3.3, surpassing the level required for significance. Interestingly, this segment, containing the EGR-1 gene, shows synteny with human chromosome 5q, a region strongly associated with various hematological malignancies. Our findings indicate that a gene mapping to this region is mutated in either C57BL/6 or DBA/2 (and possibly AKR) mice. These studies in apparently healthy mice may facilitate the identification of a gene implicated in human 5q-syndromes.  相似文献   

16.
The chromosomal location of the human gene for the alpha subunit of interleukin-5 receptor (IL5RA) has been determined. The human IL5RA gene was localized to the short arm of chromosome 3 by Southern blot analysis of DNA from a panel of mouse-human hybrid somatic cell lines. The IL5RA gene has been further localized to human chromosome region 3p24-3p26 by in situ hybridization of a molecularly cloned IL5RA cDNA fragment to metaphase chromosomes. The results suggest that the IL5RA locus is unlinked to other members of the hematopoietic receptor family. Assignment of the IL5RA gene to chromosome 3 at bands p26-p24 raises the possibility that it may be altered by certain nonrandom chromosomal abnormalities arising in human hematopoietic malignancies and solid tumors.  相似文献   

17.
Apo (a) consists of multiple tandem repeat of kringle 4, which resembles a counterpart of plasminogen. Plasma Lp (a) levels are genetically determined primarily by alleles at the apo (a) gene. Apo (a) shows size heterogeneity on the analysis of the protein and the mRNA. Pulse field gel electrophoresis revealed that size heterogeneity is largely due to different numbers of kringle 4-encoding sequences in the apo (a) gene. The cloning of apo (a) gene and identification of the 5'-flanking promoter region provide tools to study the regulation of apo (a) gene. The development of transgenic mice expressing human apo (a) offered a good model for understanding of atherosclerosis associated with elevated plasma levels of Lp (a).  相似文献   

18.
The bovine gene for the p21ras protein activator (RASA) includes in its 5' untranslated region a (TG)n repeat. Analysis of this (TG)n repeat by PCR amplification of genomic DNA revealed a four-allele polymorphism. A cDNA probe was used to assign RASA to the region 2.4-qter of bovine Chromosome (Chr) 7 by in situ hybridization. PCR analysis of a panel of somatic hybrid lines allowed the assignment of RASA to the unassigned syntenic group 22 (U22) and thus localizes U22 on Chr 7.  相似文献   

19.
Mice with maternal and paternal disomy for chromosome 11 (Chr 11) show growth retarded and overgrowth phenotypes, respectively, which can be attributed to genomic imprinting. Previous studies have defined the region of Chr 11 responsible (the Chr 11 imprinting region) as lying proximal to the T30H translocation breakpoint at the borders of G-bands 11B1.2 and 11B1.3. Evidence is presented here with two new translocations, T57H and T41Ad, which sequentially reduce the size of the imprinting region and locate it proximal to the T41Ad breakpoint in G-band 11A3.2. It therefore lies close to the centromere. The imprinted gene, U2af1-rs1, is known to be located within the original region and has been regarded as a candidate for the imprinting effects. Meiotic and mitotic chromosome FISH analysis, together with U2af1-rs1 expression studies are now described which show that the gene lies within the newly defined imprinting region and that its expression levels relate to the presence/absence and number of functional paternal alleles. U2af1-rs1 therefore remains a candidate gene for the Chr 11 imprinting effects. However, another recently reported imprinted gene, Meg1/Grb10, that lies within the region is also a good candidate, as it encodes a growth factor receptor. Meg1/Grb10 maps about 15 cM from U2af1-rs1 and is separated by conserved regions showing homology with two different human chromosomes. For these reasons, and because the two human homologues of U2af1-rs1 and Meg1/Grb10 also lie on different chromosomes, it would seem likely that the two genes identify two distinct imprinting domains within the small proximal region of mouse Chr 11.  相似文献   

20.
Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (DDT) are small proteins, which are related both by sequence and by in vitro enzyme activity. Here we show that the gene for DDT in human and mouse is identical in exon structure to MIF. Both genes have two introns that are located at equivalent positions, relative to a twofold repeat in protein structure. Although in similar positions, the introns are in different phases relative to the open reading frame. Other members of this superfamily exist in nematodes and a plant, and a related gene in C. elegans shares an intron position with MIF and DDT. In addition to similarities in structure, the genes for DDT and MIF are closely linked on human Chromosome (Chr) 22 and mouse Chr 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号