首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.  相似文献   

2.
This paper presents a new technique of electrical energy generation using mechanically excited piezoelectric materials and a nonlinear process. This technique, called synchronized switch harvesting (SSH), is derived from the synchronized switch damping (SSD), which is a nonlinear technique previously developed to address the problem of vibration damping on mechanical structures. This technique results in a significant increase of the electromechanical conversion capability of piezoelectric materials. Comparatively with standard technique, the electrical harvested power may be increased above 900%. The performance of the nonlinear processing is demonstrated on structures excited at their resonance frequency as well as out of resonance.  相似文献   

3.
This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.  相似文献   

4.
In this study, a piezoelectric transformer operating at the thickness shear vibration mode and with dual or triple outputs is proposed. It consists of a lead zirconate titanate (PZT) ceramic plate with a high mechanical quality factor Qm and a size of 120 x 20 x 4 mm3. The PZT ceramic plate is poled along the width direction. The electrodes of input and output parts are on the top and bottom surfaces of the ceramic plate and separated by narrow gaps. A new construction of support and lead wire connection is used for the transformer. At a temperature rise less than 20 degrees C and efficiency of 90%, the piezoelectric transformer with dual outputs has a maximum total output power of 169.8 W, with a power of 129.5 W in one output and 40.3 W in another. The one with triple outputs has a maximum total output power of 163.1 W, with a power of 36.9 W in the first output, 13.0 W in the second output and 113.2 W in the third output. The maximum efficiency of the piezoelectric transformer with dual outputs and triple outputs is 98% and 95.7%, respectively. The voltage gains of the transformers are less than one, and different outputs have different gains. Also, there is a driving frequency range in which the load resistance of one output has little effect on the voltage gain of another output.  相似文献   

5.
This paper presents an electromechanical model for a ring-type piezoelectric transformer (PT). To establish this model, vibration characteristics of the piezoelectric ring with free boundary conditions are analyzed in advance. Based on the vibration analysis of the piezoelectric ring, the operating frequency and vibration mode of the PT are chosen. Then, electromechanical equations of motion for the PT are derived based on Hamilton's principle, which can be used to simulate the coupled electromechanical system for the transformer. Such as voltage stepup ratio, input impedance, output impedance, input power, output power, and efficiency are calculated by the equations. The optimal load resistance and the maximum efficiency for the PT will be presented in this paper. Experiments also were conducted to verify the theoretical analysis, and a good agreement was obtained.  相似文献   

6.
A piezoelectric transformer is a power transfer device that converts its input and output voltage as well as current by effectively using electrical and mechanical coupling effects of piezoelectric materials. Equivalent-circuit models, which are traditionally used to analyze piezoelectric transformers, merge each mechanical resonance effect into a series of ordinary differential equations. Because of using ordinary differential equations, equivalent circuit models are insufficient to reflect the mechanical behavior of piezoelectric plates. Electromechanically, fully coupled governing equations of Rosen-type piezoelectric transformers, which are partial differential equations in nature, can be derived to address the deficiencies of the equivalent circuit models. It can be shown that the modal actuator concept can be adopted to optimize the electromechanical coupling effect of the driving section once the added spatial domain design parameters are taken into account, which are three-dimensional spatial dependencies of electromechanical properties. The maximum power transfer condition for a Rosen-type piezoelectric transformer is detailed. Experimental results, which lead us to a series of new design rules, also are presented to prove the validity and effectiveness of the theoretical predictions.  相似文献   

7.
In this paper, an electromechanical model for a disk-type piezoelectric transformer (PT) is proposed. To establish this model, vibration characteristics of the piezoelectric disk with free boundary conditions are analyzed in advance. Based on the vibration analysis results of the piezoelectric disk, the operating frequency and vibration mode of the PT are chosen. Then, electromechanical equations of motion for the PT can be derived based on Hamilton's principle, which can be used to simulate the coupled electromechanical system for the transformer. Voltage step-up ratio, input impedance, output impedance, input power, output power, and efficiency can be calculated by the equations. Thus, the optimal load resistance and the maximum efficiency for the PT are also calculated in this paper. Finally, experiments were conducted to verify the theoretical analysis, and good agreement was obtained.  相似文献   

8.
9.
This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting.  相似文献   

10.
Abstract

In this work, the modeling of piezoelectric transformers using the finite‐element technique is presented. A 3‐D finite element method solver, which employs 20‐node brick‐element formulation, is developed. Using the solver, the characteristics of piezoelectric transformers under different operating frequencies can be simulated. Also, the solver is capable of accounting for the effects of the electrical loadings attached to the output electrodes of piezoelectric transformers. The modeling results for two different types of piezoelectric transformers, the Rosen‐modal‐type and the unipoled‐disk‐type, are presented. For the Rosen‐modal‐type devices, the simulated voltage gains and the phase differences are validated with our measured results. Also, the simulated results of the unipoled‐disk‐type transformers agree with the measured results found in previously published literature. The effects of electrical loadings on these piezoelectric transformers are also discussed.  相似文献   

11.
The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI). Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. Electronic Publication  相似文献   

12.
A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm2 operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 Ω, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm2 electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.  相似文献   

13.
Lee KY  Kumar B  Seo JS  Kim KH  Sohn JI  Cha SN  Choi D  Wang ZL  Kim SW 《Nano letters》2012,12(4):1959-1964
Enhancing the output power of a nanogenerator is essential in applications as a sustainable power source for wireless sensors and microelectronics. We report here a novel approach that greatly enhances piezoelectric power generation by introducing a p-type polymer layer on a piezoelectric semiconducting thin film. Holes at the film surface greatly reduce the piezoelectric potential screening effect caused by free electrons in a piezoelectric semiconducting material. Furthermore, additional carriers from a conducting polymer and a shift in the Fermi level help in increasing the power output. Poly(3-hexylthiophene) (P3HT) was used as a p-type polymer on piezoelectric semiconducting zinc oxide (ZnO) thin film, and phenyl-C(61)-butyric acid methyl ester (PCBM) was added to P3HT to improve carrier transport. The ZnO/P3HT:PCBM-assembled piezoelectric power generator demonstrated 18-fold enhancement in the output voltage and tripled the current, relative to a power generator with ZnO only at a strain of 0.068%. The overall output power density exceeded 0.88 W/cm(3), and the average power conversion efficiency was up to 18%. This high power generation enabled red, green, and blue light-emitting diodes to turn on after only tens of times bending the generator. This approach offers a breakthrough in realizing a high-performance flexible piezoelectric energy harvester for self-powered electronics.  相似文献   

14.
(压电振子的几何形状是影响其振动发电的重要因素之一。在相同压电材料体积下,三角形压电振子相比于矩形和梯形压电振子具有更大的发电能力。选用悬臂梁式三角形状压电振子作为研究对象,利用有限元分析软件ANSYS进行仿真研究。建立有限元模型;通过静力学和模态分析,研究压电振子的几何形状对其输出电压、固有频率的影响规律,然后在满足原来输出电压不下降的前提下对其进行尺寸优化,提高单位体积的发电能力。在相同边界条件和外力作用下,优化尺寸模型的体积是原来的0.94倍,输出电压是原来的1.03倍,取得了很好的优化效果。  相似文献   

15.
Loss mechanisms and high power piezoelectrics   总被引:1,自引:0,他引:1  
Heat generation is one of the significant problems in piezoelectrics for high power density applications. In this paper, we review the loss mechanisms in piezoelectrics first, followed by the heat generation processes for various drive conditions. Heat generation at off-resonance is caused mainly by dielectric loss tan δ′ (i.e., P-E hysteresis loss), not by mechanical loss, while the heat generation at resonance is mainly attributed to mechanical loss tan φ′. Then, practical high power materials developed at Penn State is introduced, which exhibit the vibration velocity more than 1 m/s, leading to the power density capability 10 times of the commercially available “hard” PZTs. We propose a internal bias field model to explain the low loss and high power origin of these materials. Finally, using a low temperature sinterable “hard” PZT, we demonstrated a high power multilayer piezoelectric transformers.  相似文献   

16.
This paper presents an experimental study on electrical properties and creep behavior of thermo-mechanically processed 6060 aluminum alloy wire to assess its suitability as a winding conductor in place of electric conductor grade aluminum wire in distribution transformers. Electrical resistivity and the stress exponent and activation energy for creep were measured for both thermo-mechanically processed 6060 aluminum alloy and electric conductor grade aluminum wire. An algorithm is given for estimate the life and switching capability of the distribution transformers considering creep. The results of this study can be used as a guide to select the creep resistant winding material for designing and producing reliable distribution transformers and is valuable especially in power deficient areas, poorly designed and haphazardly expanded power distribution networks where repeatedly energized aluminum wound distribution transformers may fail due to creep in the high voltage winding conductors.  相似文献   

17.
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.  相似文献   

18.
To solve the problems of the existing on-site calibration methods, for instance, the methods need power off, and the standard transformers have large volume, heavy weight and small dynamic range, this paper proposes a high accuracy on-line calibration method for current transformers. By using a clamp-shape Rogowski coil as the standard current transformer, instead of traditional electromagnetic transformer, the volume and weight are reduced greatly, and the power of the line needn’t to be interrupted. The output signal of the clamp-shape Rogowski coil needs to be integrated, and to overcome the problems of analog integrator, which have temperature and zero drift, a high accuracy digital integrator is proposed in the paper to improve the accuracy and stability of the signal processing circuit. Test results indicate that the accuracy of the whole calibration system can reach up to 0.05 accuracy class. The on-line calibration system can calibrate the traditional and electronic current transformers when the line is energized.  相似文献   

19.
The calibration of measurement transformers represents a classical task in the practice of electrical measurements. Most commercial instruments that are expressly designed for this purpose found their working principle on a scheme that is based on the idea of Kusters and Moore. Although they can assure very high accuracy, the need to employ a high-performance electromagnetic circuit makes them very expensive and usually not suitable for measurements at frequencies that are higher than 50 or 60 Hz. For this reason, these kinds of instruments cannot be employed for the calibration of the new generation of current and voltage transducers, such as electronic measurement transformers, whose employment is growing in all the applications where wide bandwidth is required. In this paper, a new method for the calibration of electromagnetic voltage and current measurement transformers (VTs and CTs) and electronic voltage and current measurement transformers (EVTs and ECTs) is discussed, and a deep metrological characterization is carried out. The novelty of the proposed method is represented by a completely different approach to the measurement of the ratio and phase errors of the measurement transformers. The method is based on the proper digital signal processing of the signals that are collected at the secondaries of the transformer under test and of a reference transformer when the same signal is applied to their primary. Since no auxiliary electromagnetic circuits are required, this solution can be easily implemented in a simple and cost-effective way. In spite of its simplicity, the tests that are developed on a prototype clearly point out that the proposed system is suitable for the calibration of measurement transformers with precision class up to 0.1 in the frequency range from 50 Hz to 1 kHz.  相似文献   

20.
In our previous study, the multioutput piezoelectric transformer operating at the thickness-shear vibration mode was proposed and experimentally investigated. By designing a new construction of support and lead wire connection, a power density of 52.7 W/cm3 and a total output power of 169.8 W were achieved at a temperature rise less than 20 degrees C. In this work, a theoretical model was developed for the dual-output piezoelectric transformer operating at the thickness-shear vibration mode. The equivalent circuit parameters of the piezoelectric transformer were derived. Based on this, the impedance characteristics, equivalent inductance, capacitance ratio, voltage gain, and efficiency of the piezoelectric transformer were calculated. The theoretical results were verified by experimental data. Furthermore, the effect of the transformer size on the voltage gain, efficiency, output power and power density, and the effect of the load of one output on the voltage gain of another output were analyzed. Some useful guidelines were achieved by these analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号