首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以3-(N-乙基)氨基-4-甲氧基乙酰苯胺(Ⅰ)和氯乙酸甲酯为原料、无水碳酸钠为缚酸剂、甲苯为溶剂,合成3-(N-乙基-N-甲氧基羰基甲基)氨基-4-甲氧基乙酰苯胺。经正交实验法,考察了Ⅰ和氯乙酸甲酯的摩尔投料比、反应温度、甲苯及碳酸钠用量对收率的影响,其最佳工艺条件为:n(Ⅰ):n(氯乙酸酯)=1:1.1,反应温度为100℃,溶剂甲苯用量为10.4 mL,n(Ⅰ):n(碳酸钠)=1:0.56,收率96.8%。  相似文献   

2.
报道了以邻氨基苯甲酸为起始原料,首先经乙酰化、溴化、酰胺水解"一锅法"反应合成2-氨基-5-溴苯甲酸,又经缩合及环合反应合成3-硝基-4-羟基-6-溴喹啉,最后用三光气作为氯化试剂合成3-硝基-4-氯-6-溴喹啉的工艺。优化了2-氨基-5-溴苯甲酸的溴化工艺条件,探讨了缩合反应和环合反应的机理,并对缩合反应、环合反应和氯化反应的工艺条件进行了优化。较佳工艺条件为:1)n(2-乙酰氨基苯甲酸)∶n(Br_2)=1∶1.1;2)n(2-氨基-5-溴苯甲酸)∶n(硝基甲烷)∶n(氢氧化钾)=1∶3∶2.1,反应温度20℃,反应时间4.0 h;3)n(5-溴-2-((2-硝基亚乙基)氨基)苯甲酸)∶n(醋酸钾)=1∶1.1,反应温度110℃;4)n(三光气)∶n(3-硝基-4-羟基-6-溴喹啉)=0.35∶1。优化后,6步反应的总收率45.69%,产品纯度98.6%。  相似文献   

3.
实验以2-氨基吡啶为原料,经N-酰化、溴代及酰基水解一锅法合成了2-氨基-5-溴吡啶。N-酰化在回流条件下进行,n(醋酐):n(2-氨基吡啶)=1.6:1;溴代温度为50℃,n(液溴):n(2-氨基吡啶)=1.1:1;水解在室温下进行,氢氧化钠浓度为40%,总收率66.5%。产物结构经红外光谱及核磁共振氢谱进行了确证。  相似文献   

4.
以L-天冬氨酸为原料,经缩合得N-甲酰-L-天冬氨酸酐,然后经酰化、酯化、还原、成环得(S)-1-苄基-3-氨基吡咯烷,最后脱苄合成(S)-(+)3-氨基吡咯烷二盐酸盐,总收率62.8%。考察了工艺条件对反应的影响。(S)-1-苄基-3-氨基吡咯烷适宜工艺条件为:n(KBH4)∶n(H2SO4)∶n(混合物4)=3∶1.5∶1,反应温度50~60℃,反应时间6h,收率71.6%。产物结构经MS和1 H NMR进行确证。  相似文献   

5.
催化加氢制备3-氨基-4-甲氧基乙酰苯胺   总被引:3,自引:2,他引:1  
以高速淬冷法制备的Ni-Mo-Al合金为前体、经活化制得的改性骨架镍为催化剂,催化3-硝基-4-甲氧基乙酰苯胺(NMA)液相加氢制备3-氨基-4-甲氧基乙酰苯胺(AMA)。考察了催化剂用量、反应温度、反应压力对反应的影响,优化了反应条件。在以甲醇为溶剂、60℃、1.0MPa、催化剂用量0.3g(m(催化剂)∶m(NMA)=1∶10)的条件下反应40min,NMA转化率为100%,AMA选择性达99.9%。催化剂循环使用44次,稳定性良好。对该反应的动力学研究结果表明,在NMA浓度低于0.71mol/L时,该反应对于NMA的浓度宏观表现为零级反应;当反应压力为0.5~2.5MPa时,该反应对于反应压力宏观表现为一级反应;该反应的表观活化能约为52kJ/mol。  相似文献   

6.
以2,4-二氟苯甲酸(化合物1)和2-氨基-4,6-二甲氧基嘧啶为原料,经氯化、酰化和加成反应合成了具有生物活性的2,4-二氟苯甲酰基硫脲化合物(4)。考察了反应物配比、反应时间等因素对反应的影响,用元素分析和 IR、~1H NMR 对其结构进行了表征。结果表明:n(氯化亚砜)/n(化合物1)=6∶1,回流反应8 h 得到2,4-二氟苯甲酰氯(化合物2),收率89%(质量分数);n(硫氰酸钾)/n(化合物2)=1∶1,乙腈为溶剂,回流反应1 h,得到2,4-二氟苯甲酰基异硫氰酸酯(化合物3)的乙腈溶液;n(化合物3)/n(2-氨基-4,6-二甲氧基嘧啶)=0.97∶1,加入反应物总质量3%的溴化四丁基铵作催化剂,回流反应4 h,得到化合物4,收率90%(质量分数)。经初步生物活性测试表明,化合物4具有一定的除草活性。  相似文献   

7.
实验以苯和邻氨基苯甲酸为原料,经C-酰基化得2-氨基二苯甲酮,再溴化合成目标产物2-氨基-3,5-二溴二苯甲酮。研究了工艺条件对反应的影响。2-氨基二苯甲酮的适宜工艺条件为:反应温度80℃,反应时间9~10h,n(苯)∶n(邻氨基苯甲酸)=8∶1,收率可达63.1%,纯度为98.9%。2-氨基-3,5-二溴二苯甲酮的适宜工艺条件为:反应温度38~42℃,反应时间2~2.5h,n(2-氨基二苯甲酮)∶n(溴素)=1∶2.5,收率可达86.0%,纯度为95.5%,熔点为97.1~97.8℃。  相似文献   

8.
以丙烯腈工段副产的氢氰酸为原料,经4步反应制备了1-甲基海因,总收率为75.0%。较佳工艺条件是:1)羟基乙腈的制备。以氢氧化钠为催化剂,反应温度为10~15℃,收率达98%。2)甲氨基乙腈的制备。n(甲胺)∶n(羟基乙腈)=1.1∶1,反应温度为15~20℃,收率达96.3%。3)肌氨酸的制备:n(甲氨基乙腈)∶n(氢氧化钠)=1∶1.2,反应温度90℃,收率达96%。4)1-甲基海因的制备:n(肌氨酸)∶n(氰酸钠)∶n(硫酸)=1∶1.5∶0.15,反应温度100℃,收率达83%。  相似文献   

9.
以4-硝基苯甲醚为原料经催化加氢制备了中间产物4-甲氧基苯胺,再与丙烯酸反应合成了N-(4-甲氧基苯基)-N-(2-羧乙基)-β-氨基丙酸(Ⅰ)。考察了两步反应中反应温度、反应时间、溶剂种类、催化剂用量和溶剂用量对收率的影响。结果表明:第1步反应中,以5 g 4-硝基苯甲醚为底物,10 mL乙醇为溶剂,反应温度50℃,氢气压力0.6~0.8 MPa,催化剂用量0.8 g(湿重),4-甲氧基苯胺的收率达到91.5%;第2步反应中,n (4-甲氧基苯胺):n(丙烯酸)=1:4,乙酸乙酯为溶剂,反应温度45℃,反应时间10 h,产物Ⅰ的收率达到83.8%。通过质谱、核磁和红外对目标产物的结构进行了表征。  相似文献   

10.
硅氢加成一步合成γ-氨基丙基三甲氧基硅烷   总被引:1,自引:0,他引:1  
以Speier催化剂为前体、三乙胺为配体,制备了Pt-N(C2H5)3络合物催化剂,研究了该催化剂对3-氨基丙烯与三甲氧基硅烷(TMOS)硅氢加成一步合成γ-氨基丙基三甲氧基硅烷(KH-540)的催化性能。考察了配体种类、反应温度、反应时间、催化剂用量、原料配比和初始压力等因素对硅氢加成反应的影响。实验结果表明,N2保护下,在n(TMOS)∶n(3-氨基丙烯)=1.19∶1(3-氨基丙烯用量为0.064mol)、Pt-N(C2H5)3催化剂用量为1.5μmol、反应初始压力0.9MPa、140℃条件下反应270min时,3-氨基丙烯的转化率为87.9%,KH-540的选择性为81.7%,且无高聚物生成。  相似文献   

11.
Ph_4PCl催化合成碳酸二苯酯研究   总被引:2,自引:0,他引:2  
研究了以Ph4PCl为催化剂 ,草酸二苯酯脱羰基合成碳酸二苯酯反应。考察了催化剂的催化性能及影响反应的因素 ,得到了最佳的反应条件为反应温度 2 6 0℃ ,反应时间 3h ,草酸二苯酯和催化剂用量的摩比为 10 0∶1。在此条件下DPO转化率、DPC选择性、DPC收率分别为 99 5 %、98 3%、97 8%。Ph4PCl催化剂具有催化活性高 ,选择性好 ,反应时间短 ,反应速度快等优点  相似文献   

12.
采用浸渍法制备了Ni/HY苯加氢烷基化双功能催化剂,采用XRD、Py-IR、NH3-TPD和NMR等手段对催化剂的结构进行了表征,并将其应用在低温、可连续生产的固定床反应器中。考察了金属Ni质量分数(1%~5%)、酸性组分(HY、Hβ和HMCM-49分子筛)以及反应工艺条件(反应温度、反应压力、质量空速和氢/苯摩尔比)对苯加氢烷基化产物分布的影响。结果表明:在反应温度110℃、压力1.4 MPa、氢/苯摩尔比0.65和质量空速 0.85 h-1的优化条件下,Ni质量分数为4%时与HY酸性组分组成的双功能催化剂能够实现低温、连续、有效地合成环己基苯,苯的转化率为40%,环己基苯的选择性为75%,可连续稳定运行200 h。  相似文献   

13.
采用硫化铵溶液硫化法制备的Mo/C催化剂经还原活化后具有很高的甲醇气相羰化活性与选择性。最佳的催化剂制备条件为 :Mo/S摩比为 1 /4、氢气还原温度为 450℃。最佳的羰化反应工艺条件为 :反应温度 2 80℃ ,CH3OH/CO进料摩比为 1 /2 ,CO的GHSV为 450 0L/(kgcat·h) ,此时甲醇转化率达 45 2 % ,醋酸甲酯选择性为77 8% ,产物时空收率高达 1 9 2 3mol/(kgcat·h)。  相似文献   

14.
2,6-二异丙基苯胺经浓硝酸硝化,硝化产物3-硝基-2,6-二异丙基苯胺与乙二醛通过Schiff碱缩合反应,合成了N,N′-二(3-硝基-2,6-二异丙基苯基)乙二亚胺配体,该配体直接与无水氯化镍反应制得N,N′-二(3-硝基-2,6-二异丙基苯基)乙二亚胺二氯化镍配合物。采用核磁共振光谱、傅里叶变换红外光谱及元素分析的方法对配体和配合物进行了表征。在甲基铝氧烷的助催化作用下,研究了以该配合物为主催化剂催化丙烯酸甲酯聚合反应的机理,考察了催化剂浓度、聚合温度、聚合时间、n(Al)∶n(Ni)等因素对聚合反应的影响,得到最佳聚合条件:催化剂浓度0.7mmol/L、n(Al)∶n(Ni)=250、聚合温度35℃、聚合时间2h。在此条件下,聚合物相对分子质量为2.41×104,催化剂活性为23.2kg/(mol.h)(以每小时每摩尔Ni生成的聚丙烯酸甲酯质量计)。  相似文献   

15.
假设密置单层排布模型 ,在理论上探讨了高温、高压下低镍催化剂应用的可行性。并采用低比表面积工业α Al2 O3 载体 ,经CeO2 和MgO改性研制工业低镍HSD - 2催化剂。HSD - 2催化剂在 112 3K、1.0MPa下 ,与天然气、氧气、二氧化碳、水蒸气转化制合成气反应体系在n(naturalgas)∶n(CO2 )∶n(O2 )∶n(H2 O) =1∶0 .1∶0 .3∶1.3 ,空速为GHSV =1182 2h 1条件下连续反应 12 5h ,CH4 转化率始终保持在 90 %~ 94% ,H2 的选择性为 94%~ 96 %左右。较相同镍含量的Ni/α Al2 O3 催化剂活性高 ,稳定性和抗积炭性强  相似文献   

16.
甲烷水蒸气重整和部分氧化反应制合成气   总被引:11,自引:1,他引:10  
研究了Ni担载量大小,CeO2、La2O3 和ZrO2助剂及反应条件对Ni/γ-Al2O3作为催化剂的甲烷水蒸气重整和部分氧化制合成气反应的影响。实验表明:在反应温度为850 ℃,甲烷空速为1.2×104mL/g·h,V(CH4)∶V(O2)∶V(水蒸气)=2∶1∶1时,催化剂Ni含量在9%时反应性能最佳,甲烷的转化率和CO的选择性分别为97%和94%,反应3小时后有积炭存在。向Ni/γ-Al2O3催化剂中添加CeO2、La2O3、ZrO2助剂后发现,添加6%CeO2对改善催化剂的活性和抗积炭能力有显著的效果,CH4的转化率和CO的选择性分别提高到98.2%和96.4%,而且反应3小时后催化剂活性没有降低。XRD测试结果表明,添加CeO2后的催化剂生成了NiAl2O4尖晶石,这有助于催化剂的抗积炭性能。  相似文献   

17.
以固体超强酸SO2 -4/TiO2 为催化剂 ,以没食子酸和正丙醇为原料 ,合成了没食子酸丙酯 ,并考察了醇酸摩尔比、催化剂用量、催化剂焙烧温度以及反应时间对酯收率的影响。结果表明 :在焙烧温度为 5 0 0℃时 ,制得的催化剂活性最高。最适宜的条件为 :正丙醇与没食子酸的摩尔比 15∶1,固体超强酸SO2 -4/TiO2 1.8g(对14 .1g没食子酸 ) ,115~ 12 0℃反应 2 .5h ,收率达 96 .3%。  相似文献   

18.
Lewis酸、碱催化碳酸二甲酯与苯酚酯交换反应   总被引:11,自引:5,他引:6  
研究了几种Lewis酸、碱作催化剂对碳酸二甲酯与苯酚的酯交换反应催化活性 ,其中Pb(Ac) 2 ·3H2 O具有较高的催化活性和选择性。以Pb(Ac) 2 ·3H2 O为催化剂对反应的催化剂用量、原料配比、反应温度和反应时间等工艺条件进行了研究。实验表明 :当n(碳酸二甲酯 )∶n(苯酚 )∶n(Pb(Ac) 2 ·3H2 O) =1∶4∶0 0 4,反应温度 175℃ ,反应时间15h时 ,酯交换反应基本上达到平衡 ,苯酚的转化率为 2 4 80 % ,MPC的选择性为 76 49% ,DPC的选择性为2 3 5 1%  相似文献   

19.
研究了锰组分的添加含量及制备方法对Ni/g-Al2O3催化剂上二氧化碳加氢合成甲烷的影响,并用XRD,TPR,BET等手段进行表征。研究结果表明,在常压、400℃、n(H2):n(CO2)=4:1、空速为6000h-1条件下,采用共浸渍法制备Mn-Ni/g-Al2O3催化剂,n(Mn):n(Ni)=1:2时催化剂活性达到最高,CO2转化率达到77.92%,甲烷选择性超过96%。表征结果显示,添加的锰组分较好地分布在催化剂表面,并使镍晶粒细化,增强了镍物种与载体的相互作用,催化剂更易于还原,催化活性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号