共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。本文基于ASCCD朗读语篇语料库,提取每个语音段基于子段拼接的短时谱信息,分别构建基于MFCC算法的短时谱特征集和基于RASTA-PLP算法的短时谱特征集;并选用NaiveBayes分类器对这两类基于子段拼接的特征集进行建模,这种分类方法充分利用了当前语音段的相关语音特性;基于子段拼接的MFCC短时谱特征组和基于子段拼接的RASTA-PLP短时谱特征组在ASCCD上能够分别得到82.1%和80.8%的汉语重音检测正确率。实验结果证明,基于子段拼接特征规整方法可以用于汉语重音检测研究中。 相似文献
4.
重音是语言交流中不可或缺的部分,在语言交流中扮演着非常重要的角色。本文基于ASCCD朗读语篇语料库,使用MFCC算法提取每个语音段的融合上下文子段拼接短时谱信息,构建基于MFCC算法的上下文短时谱特征集;并选用NaiveBayes分类器对这类特征集进行建模,而且将具有最大后验概率的类作为该对象所属的类,这种分类方法充分利用了当前语音段的相关语音特性;融合上下文的MFCC短时谱特征组在ASCCD上能够得到83.6%的汉语重音检测正确率。实验结果证明,融合上下文子段拼接特征规整方法可以用于汉语重音检测研究中。 相似文献
5.
提出了隐条件随机场对断续基音频率序列进行直接声学建模的方法,该方法针对汉语语音中基频值在清音段连续,浊音段断续的特点,根据隐条件随机场区别于隐马尔可夫模型的重要特性——无需对观察值采用统一的建模方式,直接对不连续基频值与连续谱特征观察值一起进行声学建模。大词汇语音库上的汉语带调音节分类实验表明,隐条件随机场下对断续基音频率序列的直接建模较使用清音段人工平滑基频特征的识别率有明显的提高,还给出了与不同区分性准则训练的隐马尔可夫声学模型的实验性能的比较。 相似文献
6.
近年来,标点符号作为篇章的重要部分逐渐引起研究者的关注。然而,针对汉语逗号的研究才刚刚展开,采用的方法也大多都是在句法分析的基础上,尚不存在利用汉语句子的表层信息开展逗号自动分类的研究。提出了一种基于汉语句子的分词与词性标注信息做逗号自动分类的方法,并采用了两种有监督的机器学习分类器,即最大熵分类器和CRF分类器,来完成逗号的自动分类。在CTB 6.0语料上的实验表明,CRF的总体结果比最大熵的要好,而这两种分类器的分类精度都非常接近基于句法分析方法的分类精度。由此说明,基于词与词性做逗号分类的方法是可行的。 相似文献
7.
8.
一种基于Boosting判别模型的运动阴影检测方法 总被引:1,自引:0,他引:1
在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法先利用Boosting在不同的特征空间来区分前景和阴影,然后在判别随机场(DRFs)中结合前景和阴影的时空一致性,实现对前景和阴影的分割.首先,差分前图像与背景图像得到颜色不变子空间和纹理不变子空间;然后在这两个子空间上应用Boosting来区分前景和阴影;最后利用前景和阴影的时空一致性,在判别随机场中通过图分割的方法准确地分割前景和阴影.实验结果表明,无论是在室内场景,还是在室外场景,该文的方法要好于传统的方法. 相似文献
9.
汉语语言在书面表达时不具有天然分词的特性,词汇与词汇之间没有分词标记,因此在汉语文本的识别中需结合其行文的习惯及规则,即所谓的词汇特征。已有研究通常在实验中显式地标注词汇特征来提高识别效果,增加了人工处理流程,极大地加重了算法移植的工作量。研究并归纳了常用汉语语言的词汇特征,并利用条件随机场(conditional random fields,CRF)的特征提取能力,自行实现了复杂特征函数,在语料只具有简单标注的前提下,隐式地提取词汇特征,提高了识别效果。实验证明,在汉语分词中应用复杂词汇特征能有效提高识别性能,提供了在应用中提高识别算法可移植性的新思路。 相似文献
10.
基于条件随机场的汉语分词系统 总被引:6,自引:1,他引:6
汉语分词是自然语言处理的首要的基本工作。本文提出了一个基于条件随机场(简称CRF)的汉语分词模型,CRF模型作为一个判别模型,可以容纳任意的非独立的特征信息。我们首先将分词看作是一个标记的过程,然后利用CRF模型对每个汉字进行标记,最后转换为相应的分词结果。系统采用感知机(Perceptron)算法进行参数训练。跟以前利用CRF进行分词的模型相比,本系统定义并使用了不同的特征函数,取得了更好的切分结果。在1st SIGHAN分词比赛PK测试集上封闭测试,F值为95.2%。 相似文献
11.
Ananthakrishnan S. Narayanan S.S. 《IEEE transactions on audio, speech, and language processing》2008,16(1):216-228
With the advent of prosody annotation standards such as tones and break indices (ToBI), speech technologists and linguists alike have been interested in automatically detecting prosodic events in speech. This is because the prosodic tier provides an additional layer of information over the short-term segment-level features and lexical representation of an utterance. As the prosody of an utterance is closely tied to its syntactic and semantic content in addition to its lexical content, knowledge of the prosodic events within and across utterances can assist spoken language applications such as automatic speech recognition and translation. On the other hand, corpora annotated with prosodic events are useful for building natural-sounding speech synthesizers. In this paper, we build an automatic detector and classifier for prosodic events in American English, based on their acoustic, lexical, and syntactic correlates. Following previous work in this area, we focus on accent (prominence, or ldquostressrdquo) and prosodic phrase boundary detection at the syllable level. Our experiments achieved a performance rate of 86.75% agreement on the accent detection task, and 91.61% agreement on the phrase boundary detection task on the Boston University Radio News Corpus. 相似文献
12.
预训练语言模型虽然能够为每个词提供优良的上下文表示特征,但却无法显式地给出词法和句法特征,而这些特征往往是理解整体语义的基础.鉴于此,本文通过显式地引入词法和句法特征,探究其对于预训练模型阅读理解能力的影响.首先,本文选用了词性标注和命名实体识别来提供词法特征,使用依存分析来提供句法特征,将二者与预训练模型输出的上下文表示相融合.随后,我们设计了基于注意力机制的自适应特征融合方法来融合不同类型特征.在抽取式机器阅读理解数据集CMRC2018上的实验表明,本文方法以极低的算力成本,利用显式引入的词法和句法等语言特征帮助模型在F1和EM指标上分别取得0.37%和1.56%的提升. 相似文献
13.
14.
15.
Rangarajan Sridhar V.K. Bangalore S. Narayanan S.S. 《IEEE transactions on audio, speech, and language processing》2008,16(4):797-811
In this paper, we describe a maximum entropy-based automatic prosody labeling framework that exploits both language and speech information. We apply the proposed framework to both prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized acoustic-prosodic feature representation that is similar to linear parameterizations of the prosodic contour. The proposed model is trained discriminatively and is robust in the selection of appropriate features for the task of prosody detection. The proposed maximum entropy acoustic-syntactic model achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase structure detection through prosodic break index labeling provides accuracies of 84% and 87% on the two corpora, respectively. The reported results are significantly better than previously reported results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical, syntactic, and acoustic features for automatic prosody labeling. 相似文献
16.
基于韵律特征和语法信息的韵律边界检测模型 总被引:2,自引:2,他引:2
韵律短语边界的自动检测,对语音合成中语料库的韵律标注以及语音识别中韵律短语的自动划分都有重要意义。本文通过对影响韵律短语边界的声学、韵律等参量的分析,得到和韵律短语边界关联性较大的一组声学特征参数、韵律环境参数和语法信息;同时引入语音合成中的韵律预测思想,在假定所有音节边界均为非韵律短语边界时,预测每个音节的基频。最后使用决策树模型,将音节边界处的韵律环境信息、语法信息以及预测结果作为决策树的输入,利用决策树综合判定当前音节边界是否为韵律短语的边界。实验表明,这种方法对于基于确定性文本(text-dependent)的语音韵律短语边界的检测,具有较好效果,同时可以显著提高语音合成中语料库的标注效率和标注结果的一致性。 相似文献
17.
18.
XIANG Yuan-yuan 《计算机辅助绘图.设计与制造(英文版)》2013,(4):49-52
In this paper, we present a tire defect detection algorithm based on sparse representation. The dictionary learned from reference images can efficiently represent the test image. As the representation coefficients of normal images have a specific distribution, the local feature can be estimate by comparing representation coefficient distribution. Meanwhile, a coding length is used to measure the global features of representation coefficients. The tire defect is located by both these local and global features. Experimental results demonstrate that the proposed method can accurately detect and locate the tire defects. 相似文献
19.
为了实现复杂环境下形状、尺度变化较大的目标检测,提出一种在复杂背景图片中快速目标检测的算法.该算法采用新的局部边缘匹配特征,通过积分图像技术实现快速计算;通过机器学习算法自动提取样本的局部边缘特征来构建目标模板,且不需要任何手工分割和人工筛选的过程.在UIUC通用图像测试库上的实验结果表明,文中算法可在平移、尺度变化、... 相似文献