首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为提高半导体激光器的频率稳定性,利用原子法拉第反常色散光学滤波器(FADOF)超窄带的选频透射特性,将其置于半导体激光器的外腔中作选频元件,采用光反馈的方法,使得透射率低的激光频率分量被抑制,透射率高的激光频率分量被加强,有效地实现了光反馈激光稳频。利用Cs原子法拉第反常色散光学滤波器工作于D2线852nm的4峰窄带透射状态。通过调节半导体激光器的温度和电流,调谐半导体激光器的输出波长,将激光器锁定在任何一个透射峰上,用26%的光反馈量,使稳频后的激光频率长期稳定性保持在75MHz/2h以内,而且采用这种稳频方法的输出激光中心波长一直稳定在频率基准上,没有单方向漂移。同时,还实现了Cs原子法拉第反常色散光学滤波器稳频半导体激光器结构的一体化,使其具有实用性。  相似文献   

2.
半导体激光器稳频技术研究   总被引:3,自引:2,他引:1  
具有窄线宽和较高频率稳定性的半导体激光器,在高分辨率激光光谱、原子频率标准、大气和环境监测、光通信等众多领域中具有极其重要的应用。因此半导体激光器的稳频研究具有十分重要的意义和应用价值。较为全面的总结了目前国内外广泛应用的各种半导体激光器稳频技术,简要介绍了各稳频技术的实验方案及基本原理;对各方案的特点、能够达到的频率稳定水平、优缺点等进行了全面的分析。对半导体激光器稳频发展趋势做了预测。  相似文献   

3.
金杰  张建伟  杨宇  马翔 《激光技术》2007,31(4):341-343
为了提高1.5μm波段激光器的频率稳定性,利用乙炔分子饱和吸收稳频,设计了一种稳频的光纤光栅外腔半导体激光器。其通过步进电机对光纤光栅进行拉伸调节波长,实现了激光频率调谐。结果表明,所研制的激光器拥有较高的频率稳定度。  相似文献   

4.
半导体激光器稳频技术   总被引:1,自引:0,他引:1       下载免费PDF全文
窄线宽稳频激光器在精密干涉测量、光学频率标准、激光通信、激光陀螺、激光雷达、基本物理常数测量和冷原子系统等研究领域有着广泛的应用。自由运转的半导体激光器每天的频率漂移量可以达到GHz,因此研究半导体激光器的稳频具有十分重要的意义。以780 nm的半导体激光器稳频为例,介绍了目前广泛使用的各种半导体激光稳频技术的基本原理及试验方案,如消多普勒饱和吸收光谱稳频技术、消多普勒双色谱稳频技术、调制转移谱稳频技术、调频光谱稳频技术和频率-电压转换稳频技术,并对各种稳频方法的性能和特点进行了分析。  相似文献   

5.
高稳定度窄线宽激光器的研究   总被引:1,自引:1,他引:1  
介绍了3种不同类型的高稳定度窄线宽激光器的研究进展.基于Littman结构和饱和吸收光谱稳频技术,研制了稳频外腔半导体激光器系统,输出波长为780.2 nm,频率稳定度1 MHz,不失锁时间大于12 h.利用边带稳频技术将分布反馈(DFB)激光器的输出波长稳定在Cs原子的吸收谱线的边带处,引入数字信号处理器(DSP)全数字稳频控制技术,实现了自动找频和稳频,获得波长为852.3 nm的稳频激光输出,24 h内频率漂移为±2 MHz.利用国产磷酸盐玻璃光纤作为增益介质,实现了一台高功率单纵模光纤激光器,制作的厘米级激光器实现了最大输出功率100 mW,利用外部光反馈实现单偏振运转,测得输出线宽为2 kHz,偏振消光比优于35 dB.  相似文献   

6.
介绍了633 nm半导体激光频标系统,高重复频率锁相飞秒激光器系统和绝对频率测量系统的建立以及测量碘分子超精细跃迁绝对频率的系统方案.633 nm半导体激光频标采用三次微分稳频方法,将激光频率锁定在碘分子谱线上,获得0.5 mW的稳频激光输出.飞秒激光稳频系统通过锁相电路将飞秒激光的高重复频率(760 MHz)和初始频率稳定在微波频率标准上,从而得到稳定的飞秒光梳,其稳定度优于6.44×10-13.在此基础上建立了绝对频率的直接测量系统,即利用波长计直接测量光梳的齿数n,并通过拍频法,测出633 nm半导体激光频标与飞秒光梳的差频,从而计算出相应谱线的绝对频率.这样,通过锁相飞秒激光器,建立了微波频率标准到光学频率标准的传递,为进一步的基础研究工作奠定了基础.  相似文献   

7.
外腔半导体激光器设计与高次谐波稳频   总被引:1,自引:0,他引:1  
研究了利特罗(Littrow)结构外腔半导体激光器的结构参量对激光连续可调范围的影响。给出了反射镜转轴等处的机械加工误差对激光波长连续可调范围所造成的影响的数值计算结果。介绍了半导体激光器外腔结构设计的具体细节要点。利用该设计制作的外腔只需要配合商用半导体激光管便可以得到优质的780nm激光输出,经测量其线宽小于1MHz,连续可调谐范围大于3GHz。利用腔外Rb饱和吸收谱的三、五次谐波稳频方法对半导体激光器进行了稳频。其中提出了优化激光频率短期稳定度的方法,并对调制深度的选择给出了详细的理论解释。根据该优化方法设计出稳频系统对半导体激光器进行稳频,得到了稳定度达到10-12量级的半导体激光输出。  相似文献   

8.
;激光波长在测量方面的广泛应用决定了激光器输出频率的重要程度.文中分析了各种影响He-Ne激光光源频率稳定性的因素,如温度变化、机械振动以及磁场影响等.还介绍了目前常见的三种稳频技术:蓝姆凹陷稳频法、饱和吸收稳频法和塞曼效应稳频原理.并分析了这些技术各自的优缺点.着重介绍了热稳频法.较之前三种方法,热稳频法的系统结构简单、抗干扰能力强,因此得到了更广泛的应用.最后展望了稳频技术的新发展,即通过检测频率获得误差信号的拍频稳频技术.  相似文献   

9.
大容量、波分复用光纤通信系统的快速发展,对1.5μm波段激光器频率稳定性提出了更高要求.本文介绍了具有高稳频精度的1.5μm波段饱和吸收稳频外腔半导体激光器的工作原理及实现方案.  相似文献   

10.
外腔半导体激光器的设计与高次谐波稳频   总被引:1,自引:1,他引:0       下载免费PDF全文
首先讨论了半导体激光器外腔结构参量对激光连续可调范围影响的理论计算方法,给出了Littrow结构外腔半导体激光器调谐范围的计算结果。然后介绍了半导体激光器外腔结构参量的具体设计,利用该设计得到了出射激光线宽小于1 MHz、连续可调谐范围可达3 GHz的780 nm波段外腔半导体激光器。接着讨论了利用腔外饱和吸收谱的三次谐波稳频方法对半导体激光器进行稳频,优化激光频率短期稳定度的方法。最后根据该优化方法设计出稳频系统对半导体激光器进行稳频,得到了稳定度达到10-12量级的半导体激光输出。  相似文献   

11.
The frequency stabilization of a 1.5 mu m distributed-feedback (DFB) laser diode using a planar lightwave circuit (PLC) ring resonator whose resonant frequency is locked to /sup 12/C/sub 2/H/sub 2/ and /sup 13/C/sub 2/H/sub 2/ gas absorption lines is described. The resonant frequency of PLC ring resonator was stabilized within a 5 MHz peak-to-peak fluctuation. With this ring resonator the outer frequency fluctuation of the DFB laser diode was stabilized within 10 MHz at every resonant frequency at 5 GHz intervals. The stability demonstrated is as good as the method using molecular absorption lines as a reference. The stabilized frequency can be selected at any point on the optical resonant peaks of the optical resonator.<>  相似文献   

12.
480nm激光的稳频对于实现铷原子从基态双光子相干激发到里德堡态必不可少。本工作基于梯形构型下的电磁诱导透明现象,一种新的480nm激光器稳频技术采用偏振谱稳频的780nm激光作为探测光而480nm激光则作为耦合光,在外加偏置磁场作用下产生的双光子双色原子气体激光锁频(DAVLL)谱方法,将该谱信号通过比例-积分-微分电路后反馈回480nm激光器即可实现稳频。在频率锁定后,480nm激光器和780nm激光器长时间稳频的总线宽为1MHz左右。  相似文献   

13.
湍流对激光吸收光谱信号的影响及改善方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了解决可调谐激光二极管吸收光谱气体传感器在开放光路气体测量中,激光吸收光谱信号受到大气湍流的影响,使光谱信号幅度随大气湍流的波动而改变造成获取的气体吸收光谱信号形状发生畸变问题,改善湍流对激光吸收光谱信号的影响,提高信号检测灵敏度,采用改变激光波长扫描频率的办法进行了理论分析和实验验证,当激光波长扫描频率为2kHz时,吸收光谱相邻周期间的信号均方误差小于0.1。结果表明,该方法可以有效地改善激光吸收光谱信号受大气湍流的影响。  相似文献   

14.
利用可调谐二极管激光吸收光谱技术(TDLAS),基于吸收光谱的多普勒展宽原理,对D2/NF3燃烧驱动的HBr化学激光器,进行了光腔和扩压段的气体温度测量实验研究。为了有效地测量TDLAS吸收光谱,选用了主气流中吸收系数较大的HF分子(2-0)振动谱带的R2谱线作为研究对象。实验中利用一台中心波长1 273 nm的分布反馈式(DFB)二极管激光器,搭建了一套基于直接吸收法TDLAS的HBr化学激光器气体温度测量系统。通过对HF分子的吸收谱线进行Voigt线型拟合,获得了多普勒展宽宽度,从而给出了光腔和扩压段气体温度。在进行时域频域变换时,使用了一台自由光谱范围(FSR)为1.5 GHz的F-P标准具用于频率校准。实验测量结果表明,光腔温度约为280 K,扩压段温度约为400 K。实验过程中的碰撞展宽和多普勒展宽的比值小于0.1,表明多普勒展宽为主,能够方便地用HF吸收光谱的展宽来监测光腔和扩压段的气体温度。  相似文献   

15.
Frequency noise analysis of optically self-locked diode lasers   总被引:1,自引:0,他引:1  
Recent progress on frequency stabilization of a diode laser emitting near 850 nm is discussed. A confocal Fabry-Perot cavity is used to feed back the beam from the diode laser and provide resonant optical stabilization of the semiconductor laser. A detailed theoretical analysis of the static and dynamic frequency noise power spectrum of the coupled cavity laser field is presented. Static-frequency noise reduction of 50-60 dB and reduction of the laser linewidth from 20 MHz to less than 4 kHz are obtained. Finally, a detailed analysis of the beat-note spectra of two optically self-locked diode lasers shows a nonLorentzian RF power spectrum  相似文献   

16.
阐述了利用调节及转换技术稳定激光二极管发射器的频率 ,这种发射器可以发射纳米波长的激光。通过分析两个相互独立的激光器系统中存在的振动信号 ,知道该振动信号已揭示了在 0 .0 9秒的时间内有 10 - 1 1 秒的时间频率是相对稳定的 ,并且在 1秒的时间内似乎可以得到 10 - 1 2 的最低干扰频率。为避免产生共振 ,充分吸收铯元素的D2 线作为频率参考及非线性光谱研究  相似文献   

17.
可调谐半导体激光光谱火灾气体探测系统   总被引:5,自引:1,他引:5  
基于火灾特征气体检测的火灾报警技术被认为是一种有着广阔前景的火灾早期探测手段,特别是利用光学吸收方法的火灾气体探测技术,除了能够提供高灵敏、低误报率的火灾报警外,还能够实现火灾的早期预警.提出了基于可调谐半导体激光吸收光谱技术的火灾气体高灵敏实时检测系统,采用光通信波段光纤耦合近红外分布反馈式(DFB)半导体激光器作为光源,利用两台激光器结合调制频率多路技术实现了火灾标志性气体CO,CO2的同时检测,对CO的最低检测限约为0.00375 mg/m3(3σ),能够满足火灾气体现场检测的需要.  相似文献   

18.
A relative frequency stabilization technique using optical phase locking of miniature diode pumped Nd:YAG ring lasers is described. The master laser is RF phase modulated with a modulation index up to 7.4, and slave lasers are locked up to 21 master laser sidebands with a frequency stability better than 3 kHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号