首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine whether maternal diabetes affects rat embryo and yolk sac apoptosis during the postimplantation period. Severely malformed and growth-retarded embryos of gestational day 12 from diabetic rats exhibited pronounced DNA laddering on agarose gels. On the other hand, no DNA laddering could be observed in any of the non-malformed embryos from control and diabetic rats, or in their corresponding yolk sacs. Analysis of embryos of gestational day 10 revealed only a few scattered TUNEL positive cells mainly located in the allantois, the foregut epithelium, the cranial neuroepithelium and in the cranial mesenchyme. Embryonic tissue of gestational day 12 showed numerous aggregates of TUNEL-positive cells, indicating developmental remodelling of multiple organs. Analysis of non-malformed embryos of day 10 and 12 revealed a distribution and frequency of TUNEL positive cells unaffected by the diabetic state of the mother on both days. In vitro incubation (2-8 hr) of normal day-12 yolk sacs resulted in strong DNA laddering, but not in the corresponding embryos. Dispersed yolk sac cells generated higher levels of reactive oxygen species than dispersed embryonic cells. Reactive oxygen species levels in both embryonic and yolk sac cells were unaffected by the diabetic state of the mother. Moreover, immunoblot analysis showed high Bcl-2 and undetectable caspase-1 levels in embryos from both normal and diabetic rats and low Bcl-2 and high caspase-1 levels in the corresponding yolk sacs. Immunohistochemical analysis of embryos demonstrated caspase-1-reactivity in a small subpopulation of cells located in proximity to TUNEL-positive cells. We conclude that the inherent capacity of embryonic cells to enter apoptosis in vitro is low as compared to yolk sac cells, and that wide-spread apoptosis is not likely to play a major role in diabetes-induced dysmorphogenesis but rather in early phases of resorption of severely malformed and developmentally retarded embryos.  相似文献   

2.
Hyperketonemia has been identified as an important factor in diabetic pregnancy affecting growth and development of the offspring. In order to assess the immediate metabolic alterations in embryos caused by excess ketone bodies, we studied rat embryonic neural tissue exposed to a high concentration of beta-hydroxybutyrate in vitro. Beta-hydroxybutyrate inhibited oxygen uptake of the neural tissue of day 9 and day 10 embryos by 12.8% and 1 1.2%, but did not affect that of day 11 and day 12 tissue. In contrast, glucose utilization of the neural tissue of day 9 and day 10 embryos was not altered. However, a 30% decrease in glucose utilization was observed in the neural tissue of day 11 and day 12 embryos exposed to beta-hydroxybutyrate. Thus, beta-hydroxybutyrate induced different metabolic alterations in the embryonic neural tissue during early and late organogenesis, which suggests different modes of teratogenic action of ketone bodies in different parts of gestation.  相似文献   

3.
To investigate the nature of the oxidative event that occurs during phagocytosis of retinal outer segments (ROS) by cultured human retinal pigment epithelial (RPE) cells, cells were incubated with isolated bovine ROS labeled with either the fluorescence probe carboxy-SNAFL-2 or the nonfluorescent, oxidizable probe 2',7'-dichlorodihydrofluorescein (H2DCF). The increase in fluorescence following phagocytosis was measured by a flow cytometer. Other measurements included: oxygen consumption using a Clark-type oxygen electrode, extracellular superoxide release by superoxide dismutase inhibitable lucigenin chemiluminescence, intracellular hydrogen peroxide (H2O2) production, and the effect of catalase inhibition on cellular thiobarbituric acid-reactive substances (TBARS) caused by phagocytosis. The activities of the enzymes NADPH oxidase and palmitoyl-CoA oxidase were also measured. H2DCF attached to bovine ROS was oxidized during phagocytosis with a time course suggesting oxidation subsequent to ROS uptake. Measurements of oxygen consumption showed a time-dependent increase of 10%, 4 h after ROS feeding, attributable to a doubling of the cyanide-resistant oxygen consumption. Intracellular H2O2 production also doubled 4 h after ROS phagocytosis. ROS uptake by RPE cells produced no significant extracellular superoxide, while extracellular superoxide production was readily demonstrated in a control macrophage cell line. Enzyme activity measurements showed that incubation of RPE cells with ROS doubled catalase activity without affecting superoxide dismutase or glutathione peroxidase activities. Inhibition of catalase during ROS uptake increased TBARS by 66%. Other enzyme activity measurements showed that human RPE cells possess both NADPH oxidase and palmitoyl-CoA oxidase activities. We conclude that ROS phagocytosis subjects RPE cells to an oxidative event on the same order of magnitude as measured in a macrophage. The event is not an extracellular macrophage-type respiratory burst and may be due to intracellular H2O2 resulting from an NADPH oxidase in the phagosome or from beta-oxidation of ROS lipids in peroxisomes. Irrespective of case, the enzyme catalase appears to be essential in protecting the RPE cell against reactive oxygen species produced during phagocytosis.  相似文献   

4.
Tolbutamide is a sulfonylurea oral hypoglycaemic agent with suspected teratogenicity in humans and demonstrated teratogenicity in laboratory animals, but the underlying mechanism is unknown. This study examined maternal-to-conceptus tolbutamide transfer on gestational days 9.5 and 10.5 and drug concentration in embryonic head, heart, and trunk regions on gestational day 10.5 after maternal dosing in mouse. Embryos exposed to tolbutamide in vitro on gestational day 8.5 were assayed for glucose uptake, glycolysis, and protein content after 6, 12, and 24 hr. Dose-dependent tolbutamide transfer from maternal serum to extraembryonic fluid occurred on gestational day 9.5 and 10.5, with highest tolbutamide levels in embryonic heart on gestational day 10.5. In vitro tolbutamide exposure on gestational day 8.5 decreased glycolysis at 6 hr, increased glycolysis at 24 hr, and had no effect on glucose uptake at 6, 12, or 24 hr. Embryonic protein content reflected growth retardation after 24 hr tolbutamide exposure. Thus, mouse embryos are directly exposed to tolbutamide after maternal dosing on gestational day 9.5 and 10.5, with concentration of drug within embryonic heart. Tolbutamide-induced changes in glucose metabolism are less apparent in whole embryos than reported in adult tissues.  相似文献   

5.
Cardiomyocytes suppress contraction and O2 consumption during hypoxia. Cytochrome oxidase undergoes a decrease in Vmax during hypoxia, which could alter mitochondrial redox and increase generation of reactive oxygen species (ROS). We therefore tested whether ROS generated by mitochondria act as second messengers in the signaling pathway linking the detection of O2 with the functional response. Contracting cardiomyocytes were superfused under controlled O2 conditions while fluorescence imaging of 2, 7-dichlorofluorescein (DCF) was used to assess ROS generation. Compared with normoxia (PO2 approximately 107 torr, 15% O2), graded increases in DCF fluorescence were seen during hypoxia, with responses at PO2 = 7 torr > 20 torr > 35 torr. The antioxidants 2-mercaptopropionyl glycine and 1,10-phenanthroline attenuated these increases and abolished the inhibition of contraction. Superfusion of normoxic cells with H2O2 (25 microM) for >60 min mimicked the effects of hypoxia by eliciting decreases in contraction that were reversible after washout of H2O2. To test the role of cytochrome oxidase, sodium azide (0.75-2 microM) was added during normoxia to reduce the Vmax of the enzyme. Azide produced graded increases in ROS signaling, accompanied by graded decreases in contraction that were reversible. These results demonstrate that mitochondria respond to graded hypoxia by increasing the generation of ROS and suggest that cytochrome oxidase may contribute to this O2 sensing.  相似文献   

6.
The increased rate of embryonic dysmorphogenesis in diabetic pregnancy is correlated with the severity and duration of the concurrent hyperglycemia during early gestation. Whole embryo culture was used to investigate a possible association of hyperglycemia-induced disturbances of embryo development with tissue levels of the three alpha-oxoaldehydes: glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG). Rat embryos exposed to high glucose levels in vitro showed severe dysmorphogenesis and a 17-fold increased concentration of 3-DG compared with control embryos cultured in a low glucose concentration. Exogenous 3-DG (100 micromol/l) added to the medium of control cultures yielded an increased embryonic malformation rate and a 3-DG concentration similar to that of embryos cultured in high glucose. Addition of superoxide dismutase (SOD) to the culture medium decreased the malformation rates of embryos exposed to either high glucose or high 3-DG levels, but it did not decrease the high embryonic 3-DG concentrations caused by either agent. Our results implicate the potent glycating agent 3-DG as a teratogenic factor in diabetic embryopathy. In addition, the anti-teratogenic effect of SOD administration appears to occur downstream of 3-DG formation, suggesting that 3-DG accumulation leads to superoxide-mediated embryopathy.  相似文献   

7.
The effects of glufosinate ammonium on embryonic development in mice were examined using whole embryo and micromass cultures of midbrain and limb bud cells. In day 8 embryos cultured for 48 hr, glufosinate caused significant overall embryonic growth retardation and increased embryolethality to 37.5% at 10 micrograms/ml (5.0 x 10(-5) M). All embryos in the treated groups exhibited specific morphological defects including hypoplasia of the prosencephalon (forebrain) (100%) and visceral arches (100%). In day 10 embryos cultured for 24 hr, glufosinate significantly reduced the crown-rump length and the number of somite pairs, and produced a high incidence of morphological defects (84.6%) at 10 micrograms/ml. These embryos were characterized by blister in the lateral head (100%), hypoplasia of prosencephalon (57.1%), and cleft lips (42.9%) at 20 micrograms/ml (10.0 x 10(-5) M). Histological examination of the treated embryos showed numerous cell death (pyknotic debris) present throughout the neuroepithelium in the brain vesicle and neural tube, but did not involve the underlying mesenchyme. In micromass culture, glufosinate inhibited the differentiation of midbrain cells in day 12 embryos with 50% inhibition occurring at 0.55 microgram/ml (2.8 x 10(-6) M). The ratios of 50% inhibition concentration for cell proliferation to cell differentiation in limb bud cells were 0.76 and 1.52 in day 11 and 12 embryos, respectively. These findings indicate that glufosinate ammonium is embryotoxic in vitro. In addition to causing growth retardation, glufosinate specifically affected the neuroepithelium of the brain vesicle and neural tube, leading to neuroepithelial cell death.  相似文献   

8.
L-691,121 is a class III antiarrhythmic agent which blocks potassium currents, leading to prolongation of cardiac potential and prevention of cardiac arrhythmia. In a developmental toxicity study in rats, there was a dose-dependent decrease in embryonic/fetal survival, and death of the entire litter was seen at an oral dose of 0.8 mg/kg per day. The critical period for embryolethality was determined as gestational days (GD) 10-13. In a study where females received 1 mg/kg on a critical day (GD 10 or 12) and were killed at 24-h intervals, a high embryonic mortality was seen at 72 h (GD 10 treatment) or 48 h (GD 12 treatment) after dosing. The surviving embryos had morphological abnormalities such as enlarged cardiac tube and pericardium, generalized edema, and hematoma. In order to investigate a possible mechanism for the embryolethality, GD 11 embryos were dissected from females at 4 h after dosing of 1 mg/kg and incubated for 5 h in vitro. The embryonic heart rates were decreased for the first 2 h after incubation but tended to recover to control levels thereafter. When GD 11 embryos were incubated for 4 h with the drug, there were decreases in the heart rates during the entire observation period. In a washout study where the embryos were transferred to drug-free medium after 1-h exposure, decreased heart rates recovered to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The mechanism involved in diabetes-induced embryotoxicity is still unclear. Mitochondrial alterations probably produced by oxidative stress have been described in embryos developing in a diabetic environment. Furthermore, oxygen radicals-scavenging enzymes can reduce the embryotoxic effects induced by diabetic conditions. In this work we tried to test if glutathione (GSH), a tripeptide implicated in cellular protection against reactive oxygen species, is involved in diabetes-related embryotoxicity. Rat embryos were explanted on day 11 on gestation from normal and from streptozotocin-diabetic mothers. The embryos were examined morphologically, then protein, DNA and GSH were determined both in embryos and in their visceral yolk sacs. The embryos explanted from diabetic mothers showed signs of developmental retardation and 16% were morphologically abnormal. GSH content was reduced in these embryos in comparison to control, but the GSH/protein in the visceral yolk sacs of conceptuses explanted from diabetic mothers was higher than in control visceral yolk sacs. Our hypothesis is that the reduction of embryonic GSH is a consequence of the alteration in GSH transport across the yolk sac endodermal cells damaged by diabetic conditions. The observed reduction in embryonic GSH could reduce the protection against the oxidative stress condition described in diabetic pathology.  相似文献   

10.
Intracellular metabolism of the carcinogen chromate [Cr(VI)] produces the oxidative stress and oxidative DNA damage associated with its genotoxicity. Such oxidative stress has previously been measured by fluorescence using oxidant-sensitive dyes and attributed to the formation of reactive oxygen species (ROS). However, metabolism of Cr(VI) also produces Cr(IV) and Cr(V) which can directly damage biological macromolecules without forming ROS. We used the high-valence chromium species, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) [Cr(V)-EHBA], to test whether high-valence chromium would also react with the oxidant-sensitive dyes 2',7'-dichlorofluorescin (DCFH) and dihydrorhodamine (DHR). Cr(V)-EHBA caused both dyes to fluoresce over a wide dynamic range and under conditions which indicated that Cr(V) had reacted directly with both dyes without first forming a diffusible radical species. Dimethylthiourea (DMTU) and ethanol did not affect Cr(V)-induced fluorescence in vitro or Cr(VI)-induced fluorescence in A549 cells. Under the same conditions, ethanol and DMTU increased the extent of hydrogen peroxide-induced fluorescence. As chromium-induced fluorescence was unaffected by radical scavengers and was qualitatively different from hydrogen peroxide-induced fluorescence, we conclude that DCF and R123 fluorescence in chromate-treated A549 cells is a qualitative and cumulative measure of intracellular Cr(V) formation and not ROS.  相似文献   

11.
Diabetes mellitus in pregnancy causes congenital malformations in the offspring. The aim of this work was to characterize biochemical and morphologic anomalies in the conceptus of an animal model of diabetic pregnancy. In addition, a preventive treatment against diabetes-induced dysmorphogenesis was developed. Congenital cataract was often found in the offspring of diabetic rats. The fetal lenses had increased water accumulation, sorbitol concentration and aldose reductase activity compared to control lenses. The results suggest that the cataracts form via osmotic attraction of water due to sorbitol accumulation in the fetal lens. Another set of malformations, with possible neural crest cell origin, occurred frequently in offspring of diabetic rats. These included low set ears, micrognathia, hypoplasia of the thymus, thyroid and parathyroid glands, as well as anomalies of the heart and great vessels. Furthermore, diabetes caused intrauterine death and resorptions more frequently in the late part of gestation. When the pregnant diabetic rats were treated with the antioxidants butylated hydroxytoluene, vitamin E or vitamin C, the occurrence of gross malformations was reduced from approximately 25% to less than 8%, and late resorptions from 17% to 7%. This suggests that an abnormal handling of reactive oxygen species (ROS) is involved in diabetes-induced dysmorphogenesis in vivo. Indeed, an increased concentration of lipid peroxides, indicating damage caused by ROS, was found in fetuses of diabetes rats. In addition, embryos of diabetic rats had low concentrations of the antioxidant vitamin E compared to control embryos. These biochemical alterations were normalized by vitamin E treatment of the pregnant diabetic rats. The antioxidants are likely to have prevented ROS injury in the embryos of the diabetic rats, in particular in the neural crest cells, thereby normalizing embryonic development. These results provide a rationale for developing new anti-teratogenic treatments for pregnant women with diabetes mellitus.  相似文献   

12.
This report describes a simple, rapid, automated microassay for measuring in vitro changes of oxidative burst of phagocytes following challenge with metals for orthopedic devices. The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMNs) was measured using 2',7'-dichlorofluorescin-diacetate (DCFH-DA) as fluorescent probe. DCFH-DA enters the cells and is oxidized by ROS to fluorescent DCF. The DCF generated was directly proportional to ROS produced intracellularly: The fluorescence intensity was read and converted to an index of ROS production by cells. In our experimental system, granulocytes (PMNs) were isolated from normal human blood and seeded in microplates. To verify if metals could influence ROS production, chromium, cobalt, nickel, molybdenum, titanium, aluminum, and vanadium prepared as aqueous extracts in phosphate-buffered saline were tested onto PMNs using phorbolmyristate acetate (PMA) as positive control. Molybdenum, aluminum, and vanadium increased ROS generation by PMNs, while signals not different from unstimulated PMNs were recorded for chromium, cobalt, nickel, and titanium. The DCFH-DA microplate-based assay provides an in vitro tool for the detection of oxygen-reactive species generated by PMNs as a response to metals.  相似文献   

13.
Mechanisms of decreased insulin responsiveness of large adipocytes   总被引:1,自引:0,他引:1  
We have studied glucose metabolism using large adipocytes isolated from older, fatter rats (greater than 12 months old, greater than 550 g), and smaller cells obtained from younger, leaner animals (4-5 weeks old, 126-160 g). 2-Deoxyglucose uptake was equal in large and small adipocytes, while insulin mediated oxidation of [1(-14)C]glucose was greatly diminished (7-fold) in large cells. Thus, the defect in oxidation of the number one carbon atom of glucose (pentose pathway oxidation) is distal to the 2-deoxyglucose uptake system. However, this intracellular defect is not present in all pathways of glucose oxidation as demonstrated by the finding that [6(-14)C]glucose oxidation was comparable in small and large adipocytes. Thus, the number six carbon atom of glucose is oxidized normally indicating that glycolytic and Krebs cycle activity is intact in the large adipocyte. Furthermore, in large adipocytes conversion of glucose to total lipid was normal in the basal state and moderately decreased at high glucose concentrations in the presence of insulin (up to 35%). When the radioactivity in total lipids was fractionated, a severe decrease in glucose incorporation into fatty acids was found in the large cells. Total glucose uptake was also measured, and found to be 10-50% decreased in large cells, suggesting that the decreases in pentose pathway glucose metabolism and conversion to fatty acids lead to accumulation of free intracellular glucose with glucose efflux and a decrease in net glucose uptake. Comparing the 2-deoxyglucose uptake and glucose oxidation data showed that insulin promotes [6(-14)C]glucose oxidation by stimulating the processes responsible for 2-deoxyglucose uptake whereas insulin promotes [1(-14)C]glucose oxidation both by increasing these processes and by increasing the activity of the C-1 oxidative pathway. In conclusion: 1) the 2-deoxyglucose uptake system of the large adipocyte is basically intact, 2) [1(-14)C]glucose oxidation is markedly decreased in large adipocytes, while [6(-14)C]glucose oxidation is normal, and 3) in comparing small and large adipocytes, it appears that it is the ability of insulin to enhance glucose oxidation via the pentose pathway and to promote glucose incorporation into fatty acids which is most impaired in large adipocytes.  相似文献   

14.
OBJECTIVE: To evaluate the growth and insulin secretion from microencapsulated beta TC6-F7 cells in vitro and to assess the in vivo function of microencapsulated cells transplanted in rats with steptozotocin (STZ)-induced diabetes. METHOD: Alginate-poly-L-lysine encapsulated beta TC6-F7 cells were exposed to glucose, isobutylmethylxanthine (IBMX) and glucagon-like peptide I (7-36 amide) in a static in vitro challenge. In vivo, 2.5-3.5 x 10(7) encapsulated cells were implanted into diabetic rats. Graft function was evaluated by monitoring blood glucose concentrations and by an intraperitoneal glucose tolerance test. RESULTS: The cell density (number of cells per capsule) of cultured microencapsulated beta TC6-F7 cells increased almost 35-fold over a 55 day observation period to reach a plateau of approximately 3500 cells/capsule. While insulin secretion per capsule remained unchanged over the first 21 days of culture, a 7-fold increase was observed during the last 14 days of the 55 day observation period. Intraperitoneal transplantation of 3.5 x 10(7) encapsulated cells into diabetic rats resulted, within 24 hours, in reversal of hyperglycemia for up to 60 days. Post-transplantation blood glucose concentrations varied between 2 and 4 mM. Glucose clearance rates evaluated by an intraperitoneal glucose tolerance test at 30 days post-transplantation resulted in a markedly flat glucose clearance curve with blood glucose never rising above 4 mM. The glucose challenge of microencapsulated cells recovered 30 days post-transplantation resulted in a 2-fold increase in insulin response at glucose concentrations greater than 5.5 mM as compared to glucose-free media. In addition, immunostaining of recovered grafted tissue for insulin, reveals a strong presence of the peptide within the cell population. CONCLUSIONS: These data demonstrate the potential use of an immunoisolated beta-cell line for the treatment of diabetes.  相似文献   

15.
Recent studies have suggested that the fetal dysmorphogenesis in diabetic pregnancies is associated with an increase in embryonic oxygen-free radicals. This excess of oxygen-free radicals may result from either overproduction or decreased clearance by the enzymatic scavenging mechanism. However, there are no in vivo data on the activity of embryonic oxygen-free radical scavenging enzymes. The purpose of the current study is to investigate whether this increase in embryonic oxygen-free radicals is the result of a change in the activity of the fetal oxygen-free radical scavenging/antioxidant enzymes during pregnancy complicated by maternal diabetes in an in vivo rat model. Thirty-six Sprague-Dawley rats were randomly assigned to one of two study groups: nondiabetic control and an untreated diabetic group. On day 12, fetuses were examined for crown-rump lengths, somite numbers, and external anomalies. The activity of fetal oxygen-free radical scavenging enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT), were determined. The untreated diabetic group of rats had a significantly higher mean blood glucose level than that of the nondiabetic controls and also a significantly lower weight gain, higher resorption rate, smaller embryonic size with lower total protein content, and a approximately 6-fold increase in the rate of fetal neural tube defects compared to the nondiabetic controls. Superoxide dismutase activity was significantly reduced in the embryos with neural tube defects regardless of maternal diabetic status (2.25 +/- 0.83 vs. 1.17 +/- 0.04 u/mg protein; P < 0.05). Glutathione peroxidase and catalase activity were significantly reduced in malformed versus normal-formed embryos of nondiabetic mothers (GPX-2.68 +/- 1.15 vs. 4.46 +/- 1.12 mu/mg protein, CAT -1.67 +/- 0.53 vs 2.49 +/- 0.61 u/mg protein respectively; P < 0.01). However, overall catalase activity was increased in embryos of diabetic mothers as compared to controls. Two-way analysis of variance identified fetal malformations as the variance associated with reduced fetal SOD activity, whereas maternal diabetes was associated with the increase in fetal catalase activity. Neither neural tube defect nor maternal diabetes was found to be the variable affecting fetal GPX activity, Fetal oxygen-free radical scavenging enzymes respond differently to the adverse environment created by maternal diabetes during pregnancy. Defects in embryonic SOD and catalase activity, regardless of maternal diabetic status, may reduce the ability of the fetus to clear free oxygen radicals, thereby exposing it to an increased oxidative load that may cause fetal dysmorphogenesis. The diabetic state of the mothers did not decrease embryonic activity of any of the scavenging enzymes. Therefore, although excess oxidative load, as observed in diabetes, may cause tissue injury and embryopathy, the mechanism does not appear to be a diabetes-induced reduction in the action of the scavenging enzymes.  相似文献   

16.
The mechanism of farnesol (FOH)-induced growth inhibition of Saccharomyces cerevisiae was studied in terms of its promotive effect on generation of reactive oxygen species (ROS). The level of ROS generation in FOH-treated cells increased five- to eightfold upon the initial 30-min incubation, while cells treated with other isoprenoid compounds, like geraniol, geranylgeraniol, and squalene, showed no ROS-generating response. The dependence of FOH-induced growth inhibition on such an oxidative stress was confirmed by the protection against such growth inhibition in the presence of an antioxidant such as alpha-tocopherol, probucol, or N-acetylcysteine. FOH could accelerate ROS generation only in cells of the wild-type grande strain, not in those of the respiration-deficient petite mutant ([rho0]), which illustrates the role of the mitochondrial electron transport chain as its origin. Among the respiratory chain inhibitors, ROS generation could be effectively eliminated with myxothiazol, which inhibits oxidation of ubiquinol to the ubisemiquinone radical by the Rieske iron-sulfur center of complex III, but not with antimycin A, an inhibitor of electron transport that is functional in further oxidation of the ubisemiquinone radical to ubiquinone in the Q cycle of complex III. Cellular oxygen consumption was inhibited immediately upon extracellular addition of FOH, whereas FOH and its possible metabolites failed to directly inhibit any oxidase activities detected with the isolated mitochondrial preparation. A protein kinase C (PKC)-dependent mechanism was suggested to exist in the inhibition of mitochondrial electron transport since FOH-induced ROS generation could be effectively eliminated with a membrane-permeable diacylglycerol analog which can activate PKC. The present study supports the idea that FOH inhibits the ability of the electron transport chain to accelerate ROS production via interference with a phosphatidylinositol type of signal.  相似文献   

17.
The effect of all-trans retinoic acid (RA), which is known as a regulator of cell growth and differentiation, was studied during neuronal apoptosis. Apoptosis was induced in primary cultures of chick embryonic neurons by treatment with staurosporine (200 nM) for 24 h which led to a reduction of cellular viability to 40% compared to 83% in untreated cultures as well as to an increase in the number of apoptotic neurons (determined by nuclear staining with Hoechst 33258) to 60% compared to 15% in untreated cultures. RA (1 nM-10 microM) reduced the number of non-viable and apoptotic cells in a concentration-dependent manner and the maximal response was seen at 1 microM RA with 60% cellular viability and 38% apoptotic neurons. The production of mitochondrial reactive oxygen species (ROS, determined by the fluorescent indicator dihydrorhodamine) was elevated 4.4-fold after 4 h of staurosporine-treatment which was reduced to a 2-fold increase in the presence of 10 microM RA. The results indicate that RA was able to reduce apoptotic damage in staurosporine-treated chick embryonic neurons by suppressing the production of ROS.  相似文献   

18.
Embryonic bioactivation and formation of reactive oxygen species (ROS) are implicated in the mechanism of phenytoin teratogenicity. This in vivo study in pregnant CD-1 mice evaluated whether maternal administration of the antioxidative enzymes superoxide dismutase (SOD) and/or catalase conjugated with polyethylene glycol (PEG) could reduce phenytoin teratogenicity. Initial studies showed that pretreatment with PEG-SOD alone (0.5-20 KU/kg i.p. 4 or 8 h before phenytoin) actually increased the teratogenicity of phenytoin (65 mg/kg i.p. on gestational days [GD] 11 and 12, or 12 and 13) (p < .05), and appeared to increase embryonic protein oxidation. Combined pretreatment with PEG-SOD and PEG-catalase (10 KU/kg 8 or 12 h before phenytoin) was not embryo-protective, nor was PEG-catalase alone, although PEG-catalase alone reduced phenytoin-initiated protein oxidation in maternal liver (p < .05). However, time-response studies with PEG-catalase (10 KU/kg) on GDs 11, or 11 and 12, showed maximal 50-100% increases in embryonic activity sustained for 8-24 h after maternal injection (p < .05), and dose-response studies (10-50 KU/kg) at 8 h showed maximal respective 4-fold and 2-fold increases in maternal and embryonic activities with a 50 KU/kg dose (p < .05). In controls, embryonic catalase activity was about 4% of that in maternal liver, although with catalase treatment, enhanced embryonic activity was about 2% of enhanced maternal activity (p < .05). PEG-catalase pretreatment (10-50 KU/kg 8 h before phenytoin) also produced a dose-dependent inhibition of phenytoin teratogenicity, with maximal decreases in fetal cleft palates, resorptions and postpartum lethality at a 50 KU/kg dose (p < .05). This is the first evidence that maternal administration of PEG-catalase can substantially enhance embryonic activity, and that in vivo phenytoin teratogenicity can be modulated by antioxidative enzymes. Both the SOD-mediated enhancement of phenytoin teratogenicity, and the inhibition of phenytoin teratogenicity by catalase, indicate a critical role for ROS in the teratologic mechanism, and the teratologic importance of antioxidative balance.  相似文献   

19.
Mice that harbor a targeted homozygous defect in the gene coding for the gap junctional protein connexin26 died in utero during the transient phase from early to midgestation. From day 10 post coitum onwards, development of homozygous embryos was retarded, which led to death around day 11 post coitum. Except for growth retardation, no gross morphological alterations were detected between homozygous connexin26-defective embryos and wild-type littermates. At day 9 postcoitum, when chorioallantoic placenta started to function, connexin26 was weakly expressed in the yolk sac epithelium, between syncytiotrophoblasts I and II in the labyrinth region of the placenta, and in the skin of the embryo. At day 10 post coitum, expression of connexin26 in the placenta was much stronger than at the other locations. To analyze involvement of connexin26 in the placental transfer of nutrients, we have measured embryonic uptake of the nonmetabolizable glucose analogue 3-O-[14C]methylglucose, injected into the maternal tail vein. At day 10 post coitum, viable, homozygous connexin26-defective embryos accumulated only approximately 40% of the radioactivity measured in wild-type and heterozygous littermates of the same size. We conclude that the uptake of glucose, and presumably other nutrients as well, from maternal blood into connexin26-deficient mouse embryos was severely impaired and apparently not sufficient to support the rapid organogenesis during midgestation. Our results suggest that connexin26 gap junction channels likely fulfill an essential role in the transfer of maternal nutrients and embryonic waste products between syncytiotrophoblast I and II in the labyrinth layer of the mouse placenta.  相似文献   

20.
Changes in mitochondrial function were studied in perfused liver from rats aged 24-365 days. Oxygen consumption together with the rates of gluconeogenesis, urea synthesis and ketogenesis were determined. Basal mitochondrial respiration as well as the ability of the liver to synthesize glucose, urea and ketone bodies declined from 24- to 365-day-old rats. On the other hand, on transition from 24 to 60 days the liver oxidation rate of hexanoate, sorbitol and glycerol is enhanced, but not of ketone bodies or palmitate. Our results show that the transition from weaning to middle age is accompanied by defined changes in hepatic substrate oxidation. From the observed time course of the decrease in basal and substrate-stimulated oxygen consumption, it is concluded that in rat liver cells a decline in respiratory chain function, long-chain fatty acid and ketone body metabolism, gluconeogenesis and ureogenesis occurs at a relatively early life stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号