首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-density (512K-word/spl times/8-b) erasable programmable read-only memory (EPROM) has been designed and fabricated by using 0.8-/spl mu/m n-well CMOS technology. A novel chip layout and a sense-amplifier circuit produce a 120-ns access time and a 4-mA operational supply current. The interpoly dielectric, composed of a triple-layer structure, realizes a 10-/spl mu/s/byte fast programming time, in spite of scaling the programming voltage V/SUB PP/ from 12.5 V for a 1-Mb EPROM to 10.5 V for this 4-Mb EPROM. To meet the increasing demand for a one-time programmable (OTP) ROM, a circuit is implemented to monitor the access time after the assembly. A novel redundancy scheme is incorporated to reduce additional tests after the laser fuse programming. Cell size and chip size are 3.1/spl times/2.9 /spl mu/m/SUP 2/ and 5.86/spl times/14.92 mm/SUP 2/, respectively.  相似文献   

2.
A 25-ns 4-Mbit CMOS SRAM with 512 K word*8-bit organization has been developed. The RAM was fabricated using a 0.5- mu m double-poly and double-aluminum CMOS technology and was assembled in a 32-pin 400-mil DIP. A small cell size of 3.6*5.875 mu m/sup 2/ and a chip size of 7.46*17.41 mm/sup 2/ were obtained. A fast address access time of 25 ns with a single 3.3-V supply voltage has been achieved using the newly developed dynamic bit-line load (DBL) circuit scheme incorporated with an address transition detector (ATD), divided word-line structure (DWL), three-stage sense amplifier, and low-noise output circuit approach. A low operating current of 46 mA at 40 MHz and low standby currents of 70 mu A (TTL) and 5 mu A (CMOS) were also attained.<>  相似文献   

3.
A high-speed 1-Mb EPROM (erasable programmable read-only memory) with an enhanced verify mode to insure adequate threshold shift after programming has been developed. The sense circuitry uses an offset current to shift the sense point to require higher threshold shift during verification. The access time is improved by a clocking scheme that balances the sensing circuitry between column accesses and by a chip architecture optimized for speed. The chip features an access time of 70 ns and an active current of 20 mA. A typical programming time of 50 μs has been measured. The device is processed in a 1-μm L eff CMOS process with silicides  相似文献   

4.
A 4-Mb CMOS DRAM measuring 6.9/spl times/16.11 mm/SUP 2/ has been fabricated using a 0.9-/spl mu/m twin-tub CMOS, triple-poly, single-metal process technology. N-channel depletion-type trench cells, 2.5/spl times/5.5 /spl mu/m/SUP 2/ each, are incorporated in a p-well. A novel built-in selftest (BIST) function which enables a simultaneous and automatic test of all the memory devices on a board is introduced to reduce the RAM testing time in a system. This function is effective for system maintenance and a daily start-up test even in a relatively small system. A high-speed low-power 4-Mb CMOS DRAM with 60-ns access time, 50-mA active current, and 200-/spl mu/A standby current is realized by widening the DQ line bus which connects the sense amplifiers with DQ buffers, thereby reducing the parasitic capacitance of the DQ lines.  相似文献   

5.
A 1-Mb CMOS static RAM with a 256 K word×4-bit configuration has been developed. The RAM was fabricated using 0.8-μm double-poly and double-aluminum twin-well CMOS technology. A small cell size of 5.2 μm×8.5 μm and a chip size of 6.15 mm×15.21 mm have been achieved. A fast address access time of 15 ns was achieved using novel circuit techniques: a PMOS-load decoder and a three-stage dynamic gain control sense amplifier combined with an equalization technique and feedback capacitances. A low active current of 50 mA at 20 MHz and low standby currents of 15 mA (TTL) and 2 μA (CMOS) were also attained  相似文献   

6.
A 1-Mb (128 K×8-bit) CMOS static RAM (SRAM) with high-resistivity load cell has been developed with 0.8-μm CMOS process technology. Standby power is 25 μW, active power 80 mW at 1-MHz WRITE operation, and access time 46 ns. The SRAM uses a PMOS bit-line DC load to reduce power dissipation in the WRITE cycle, and has a four-block access mode to reduce the testing time. A small 4.8×8.5-μm2 cell has been realized by triple-polysilicon layers. The grounded second polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size is 7.6×12.4 mm2  相似文献   

7.
A 1-Mbit CMOS static RAM (SRAM) with a typical address access time of 9 ns has been developed. A high-speed sense amplifier circuit, consisting of a three-stage PMOS cross-coupled sense amplifier with a CMOS preamplifier, is the key to the fast access time. A parallel-word-access redundancy architecture, which causes no access time penalty, was also incorporated. A polysilicon PMOS load memory cell, which had a large on-current-to-off-current ratio, gave a much lower soft-error rate than a conventional high-resistance polysilicon load cell. The 1-Mbit SRAM, fabricated using a half-micrometer, triple-poly, and double-metal CMOS technology, operated at a single supply voltage of 5 V. An on-chip power supply converter was incorporated in the SRAM to supply a partial internal supply voltage of 4 V to the high-performance half-micrometer MOS transistors.<>  相似文献   

8.
A 16-ns 1-Mb CMOS EPROM has been developed utilizing high-speed circuit technology and a double-metal process. In order to achieve the fast access time, a differential sensing scheme with address transition detection (ATD) is used. A double-word-line structure is used to reduce word-line delay. High noise immunity is obtained by a bit-line bias circuit and data-latch circuit. Sufficient threshold voltage shift (indispensable for fast access time) is guaranteed by a threshold monitoring program (TMP) scheme. The array is organized as 64 K×16 b, which is suitable for 32-b high-performance microprocessors. The active power is 425 mW, the programming time is 100 μs, and the chip size is 4.94×15.64 mm2  相似文献   

9.
A 4-Mb word/spl times/1-b/1-Mb word/spl times/4-b CMOS DRAM characterized by a twisted driveline sense-amplifier (TDSA) scheme and a multiphase drive circuit which enable faster access time and a smaller peak power supply current, respectively, is described. The implementation of an initialize mode with CAS-before-RAS (CBR) logic control, which reduces the memory-chip initialization time by almost a thousand times, is also discussed. The chip measures 6.38/spl times/17.38 mm/SUP 2/ and has been fabricated by using double-well CMOS technology with a minimum design rule of 0.8 /spl mu/m. A typical access time of 65 ns and a peak power supply current of less then 150 mA have been obtained.  相似文献   

10.
A high-speed 32 K×8 CMOS EPROM has been designed and implemented in a polycide 1.2-μm n-well epi CMOS technology. A high-read-current split-gate EPROM cell combined with address transition detection-based SRAM-like precharge, equalization, and clocked differential sensing schemes has resulted in a typical address access time of less than 50 ns. The typical power dissipation at 18.2 MHz is 60 mW. Row redundancy is used to enhance the yield and the part has been designed to be compatible with plastic packaging  相似文献   

11.
The authors describe a 14-ns 1-Mb CMOS SRAM (static random-access memory) with both 1M word×1-b and 256 K word×4-b organizations. The desired organization is selected by forcing the state of an external pin. The fast access time is achieved by the use of a shorter divided-word-line (DWL) structure, a highly sensitive sense amplifier, a gate-controlled data-bus driver, and a dual-level precharging technique. The 0.7-μm double-aluminum and triple-polysilicon process technology with trench isolation offers a memory cell size of 41.6 μm2 and a chip size of 86.6 mm 2. The variable bit-organization function reduces the testing time while keeping the measurement accuracy of the access times  相似文献   

12.
A 1-Mb (256 K×4 b) CMOS static random-access memory with a high-resistivity load cell was developed with 0.7-μm CMOS process technology. This SRAM achieved a high-speed access of 18 ns. The SRAM uses a three-phase back-bias generator, a bus level-equalizing circuit and a four-stage sense amplifier. A small 4.8×8.5-μm2 cell was realized by the use of a triple-polysilicon structure. The grounded second-polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size measures 7.5×12 mm2  相似文献   

13.
A 128 K/spl times/8-b CMOS SRAM is described which achieves a 25-ns access time, less than 40-mA active current at 10 MHz, and 2-/spl mu/A standby current. The novel bit-line circuitry (loading-free bit line), using two kinds of NMOSFETs with different threshold voltages, improves bit-line signal speed and integrity. The two-stage local amplification technique minimizes the data-line delay. The dynamic double-word-line scheme (DDWL) allows the cell array to be divided into 32 sections along the word-line direction without a huge increase in chip area. This allows the DDWL scheme to reduce the core-area delay time and operating power to about half that of other conventional structures. A double-metal 0.8-/spl mu/m twin-tub CMOS technology has been developed to realize the 5.6/spl times/9.5-/spl mu//SUP 2/ cell size and the 6.86/spl times/15.37-mm/SUP 2/ chip size.  相似文献   

14.
Describes a 1-Mbit high-speed DRAM (HSDRAM), which has a nominal random access time of less than 27 ns and a column access time of 12 ns with address multiplexing. A double-polysilicon double-metal CMOS technology having PMOS arrays inside n-wells was developed with an average 1.3- mu m feature size. The chip has also been fabricated in a 0.9*shrunken version with an area of 67 mm/sup 2/, showing a 22-ns access time. The chip power consumption is lower than 500 mW at 60-ns cycle time. This HSDRAM, which provides SRAM-like speed while retaining DRAM-like density, allows DRAMs to be used in a broad new range of applications.<>  相似文献   

15.
A 128-kb word/spl times/8-b CMOS SRAM with an access time of 3 ns and a standby current of 2 /spl mu/A is described. This RAM has been fabricated using triple-polysilicon and single-aluminum CMOS technology with 0.8-/spl mu/m minimum design features. A high-resistive third polysilicon load has been developed to realize a low standby current. In order to obtain a faster access time, a 16-block architecture and a data-output presetting technique combined with address transition detection (ATD) are used. This RAM has a flash-clear function in which logical zeros are written into all memory cells in less than 1 /spl mu/s.  相似文献   

16.
Low-noise, high-speed circuit techniques for high-density DRAMs (dynamic random-access memories), as well as their application to a single 5-V 16-Mb CMOS DRAM with a 3.3-V internal operating voltage for a memory array, are described. It was found that data-line interference noise becomes unacceptably high (more than 25% of the signal) and causes a serious problem in 16-Mb DRAM memory arrays. A transposed data-line structure is proposed to eliminate the noise. Noise suppression below 5% is confirmed using this transposed data-line structure. A current sense amplifier is also proposed to maintain the data-transmission speed in common I/O lines, in spite of a reduced operating voltage and increased parasitic capacitance loading in the memory array. A speed improvement of 10 ns is achieved. Using these circuit techniques, a 16-Mb CMOS DRAM with a typical RAS access time of 60 ns was realized  相似文献   

17.
To meet the increasing demand for higher-density and faster EPROMs, a 16-Mb CMOS EPROM has been developed based on 0.6-μm N-well CMOS technology. In scaled EPROMs, it is important to guarantee device reliability under high-voltage operation during programming. By employing internal programming-voltage reduction and new stress relaxation circuits, it is possible to keep an external programming voltage Vpp of 12.5 V. The device achieves a 62-ns access time with a 12-mA operating current. A sense-line equalization and data-out latching scheme, made possible by address transition detection (ATD), and a bit-line bias circuit with two types of depletion load led to the fast access time with high noise immunity. This 16-Mb EPROM has pin compatibility with a standard 16-Mb mask-programmable ROM (MROM) and is operative in either word-wide or byte-wide READ mode. Cell size and chip size are 2.2 μm×1.75 μm and 7.18 mm×17.39 mm, respectively  相似文献   

18.
A 17-ns nonaddress-multiplexed 4-Mb dynamic RAM (DRAM) fabricated with a pure CMOS process is described. The speed limitations of the conventional DRAM sensing technique are discussed, and the advantages of using the direct bit-line sensing technique are explained. A direct bit-line sensing technique with a two-stage amplifier is described. One readout amplifier is composed of a two-stage current-mirror amplifier and a selected readout amplifier is activated by a column decoder output before the selected word line rises. The amplifier then detects a small bit-line signal appearing on a bit-line pair immediately after the word-line rise. This two-stage amplification scheme is essential to improving access time, especially in the case of a CMOS process. The high sensitivity of the readout amplifier is discussed, and the electrical features and characteristics of the fabricated DRAM are reported  相似文献   

19.
A 4-Mb SRAM with a 15-ns access time and a uniquely selectable (×4 or ×1) bit organization has been developed based on a 0.55-μm triple-polysilicon double-metal CMOS technology. An input-controlled PMOS-load (ICPL) sense amplifier, Y-controlled bit-line loads (YCLs), and a transfer word driver (TDW) are three key circuits which have been utilized in addition to the 0.55-μm CMOS technology to achieve the remarkable access time of 15 ns. Bit organization of either ×4 or ×1 can be selected purely electrically, and does not require any pin connection procedure  相似文献   

20.
A 1-Mb ROM has been developed, organized as either 64K/spl times/16 or 128K/spl times/8 in a pin-selectable option. Multiplexing the address inputs and the data outputs onto the same pins makes it possible to fit into a 28-pin package and to perform straightforward interfacing with some popular 16-bit microprocessors. The process technology is a 1.5-/spl mu/m twin-well double-level-metal CMOS on a grounded p-type substrate. The device uses some dynamic circuitry during the start of the active cycle, but automatically takes itself back into the static precharge state-except for the latched outputs. Typical access time is 70 ns. New high-speed error detection and correction circuits were developed which work in about 10 ns. Because all 16 outputs are not driven at once, but half are delayed by about 15 ns through a process-tracking delay circuit, the on-chip error correction is finished before the process-tracking delay circuit is through, and error correction costs no further access penalty. These error correction circuits enhance both yield and reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号