首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The present studies investigated conditions for the induction of long-term potentiation (LTP) in the local horizontal pathways of layers II/III in the primary motor cortex (MI) of the adult rat. Field potential and intracellular recordings demonstrated synaptic interactions across the superficial layers within MI that could be enhanced transiently by focal application of the gamma-aminobuturic acid-A receptor antagonist bicuculline methiodide (Bic) at the recording site. 2. Field potentials evoked in the superficial MI horizontal pathways increased in amplitude after tetanizing, theta burst stimulation (TBS), but only when Bic was applied transiently at the recording site immediately before TBS. In the absence of Bic, TBS failed to produce long-lasting increases in horizontally evoked field responses. By contrast, TBS delivery during focal Bic application increased field potential amplitudes by 25-35% when measured 25-30 min after stimulation. The amount of potentiation was greater when two converging horizontal inputs were stimulated together but was not increased with higher intensity stimulation. Persistent effects of Bic application alone were evident. However, these effects were small unless Bic application continued until evoked field potential amplitude increase exceeded 200% of baseline. 3. The synaptic nature of field potential increases were confirmed using intracellular recordings of layer II/III neurons located near field potential electrodes. 4. LTP also could be induced without Bic application by cotetanization of vertical pathways simultaneously with horizontal activation. Vertical conditioning alone at 2 Hz, which affects inhibitory efficacy, was shown to transiently relieve depression of successive responses that ordinarily occurs during a burst of three horizontal stimuli. These results suggest that LTP of horizontal pathways may be regulated by spatiotemporal interactions between horizontal and vertical pathways. 5. Horizontal LTP was blocked reversibly by bath application of the N-methyl-D-aspartate (NMDA) antagonist 2-amino-5-phosphonovaleric acid, thereby implicating NMDA-receptor activation in LTP induction for these pathways. 6. The results confirm and extend our previous finding that the potential for activity-dependent modification of synaptic connections exists within the intrinsic horizontal connections of the superficial cortical layers. Synaptic modification across horizontally connected neurons appears to be regulated both by the arrangement of intrinsic circuitry and by the availability of mechanisms for modification at individual synapses. The properties of horizontal connections indicate that they form a spatial substrate and provide an activity-dependent mechanism for plasticity of adult cortical representations.  相似文献   

2.
Spatio-temporal patterns of neuronal activity after the induction of long-term potentiation (LTP) in mouse hippocampal slices were studied with the use of a real-time high-resolution optical recording system. The slices were stained with voltage-sensitive dye and then high-frequency pulses (tetanus) were delivered to Schaffer collaterals of CA3 at the stratum radiatum of CA1. Optical signals as well as field potential in response to test pulses were potentiated after tetanus. The area of response measured by optical recording was slightly but significantly enlarged after tetanus, suggesting that the propagation of optical responses from CA1 towards the subiculum was enlarged. It was suggested that a great increase in neuronal activity was elicited at CA1 and the subiculum after LTP. These changes of spatio-temporal patterns of neuronal activity may contribute to learning and memory. The effect of trichloroethylene (TCE) on LTP was studied with the use of both electrical and optical and recording. The hippocampus from mice injected with 300 mg/kg or 1000 mg/kg TCE was sliced 24 hours after TCE-administration. Test pulses were delivered to Schaffer collaterals every 30 sec and the field potential from the stratum pyramidale of CA1 was recorded. At 40 min after the application of tetanus, population spikes (PS) were potentiated in all groups, but the post/pre ratio of PS was smaller in TCE groups than in the control. Optical recording was also carried out in 1000 mg/kg TCE-injected mice. At 40 min after tetanus, the optical signal response to the test pulse was potentiated in both TCE and control groups, but the post/pre ratio of the optical signals was smaller in TCE than in the control. No significant difference was detected in the increase in the neuronal response area between TCE and the control. It was suggested that TCE depressed the LTP, whereas the increase in the area after tetanus meant that a good amount of neuronal activity was still potentiated.  相似文献   

3.
Cytokines such as interleukin-1 beta (IL-1 beta) are released in the nervous system following inflammation or infection. Recently, IL-1 beta was shown to enhance synaptic inhibitory mechanisms. We therefore investigated the effect of IL-1 beta superfusion on long-term potentiation (LTP), the cellular model of memory and learning, evoked in the CA1 region by tetanic stimulation of the stratum radiatum in the rat hippocampal slice. IL-1 beta (150 pM-1.5 nM) superfused 10 min before tetanic stimulation significantly reduced LTP of the slope of the population excitatory postsynaptic potential (pEPSP) and the population spike (PS) amplitude in CA1 in a concentration-dependent manner. IL-1 beta (1.5 nM) applied for 10 min 1 h before tetanus significantly inhibited LTP of the PS amplitude and pEPSP slope and reduced pEPSP and PS values before tetanus as well, although the PS returned to control values before tetanus. Heat-inactivated IL-1 beta had no effect on pre-tetanus pEPSP or PS values or the induction of LTP. These data demonstrate that IL-1 beta modulates synaptic potentials and reduces LTP. These findings have important implications for the role of IL-1 beta in neuronal disorders following infection, perhaps best exemplified by HIV-1-associated dementia.  相似文献   

4.
Activation of metabotropic glutamate receptors (mGluRs) with 1-aminocyclopentane-1S,3R-dicarboxylic acid 20 min prior to tetanus facilitates, or "primes," subsequent induction of long-term potentiation (LTP; Cohen and Abraham, J Neurophysiol 1996;76:953-962). In the present study, we investigated the receptor specificity and associated second messenger pathways involved in the mGluR priming effect by using field potentials recorded from area CA1 of rat hippocampal slices. In controls, mild theta-burst or high-frequency (100 Hz) stimulation induced 16% and 21% LTP, respectively. A 10-min application of the group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) caused a transient depression of synaptic responses but a significant enhancement of subsequent LTP for both tetanus protocols (45% and 41% LTP, respectively). Maximal LTP, induced by stronger tetanization protocols, was not enhanced by DHPG, nor was mild LTP facilitated by post-tetanic application of DHPG. Priming with agonists selective for group II or III mGluRs had no effect on LTP. The mGluR antagonists L-2-amino-3-phosphonopropionic acid and 1-aminoindan-1,5-dicarboxylic acid inhibited the LTP facilitatory effect of DHPG but not the transient response depression, whereas alpha-methyl-4-carboxyphenylglycine produced the opposite effects. Priming with N-methyl-D-aspartate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid did not facilitate LTP induction. Prior activation of muscarinic acetylcholine receptors produced at best a weak priming effect. Inhibition of phospholipase C by U-73122 completely abolished the priming of LTP by DHPG. We conclude that mGluR priming of LTP results from biochemical cascades triggered by activation of phospholipase C coupled to group I mGluRs.  相似文献   

5.
We investigated the synaptic terminals of fibers originating in the ventroposteromedial thalamic nucleus (VPM) and projecting to the main input layers (IV/III) of the rat posteromedial barrel subfield. It was our aim to determine whether or not the subpopulation of vasoactive intestinal polypeptide (VIP)-immunoreactive neurons in these layers are directly innervated by the sensory thalamus. Anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and immunohistochemistry for VIP were combined for correlated light and electron microscopic examination. Columns of cortical tissue were well defined by barrel-like patches of PHA-L-labeled fibers and boutons in layers IV and III. Within these columns VIP-immunoreactive perikarya were located mainly in supragranular layers. Marked perikarya were also seen in infragranular layers, but their immunoreactivity was often weaker. Granular layer IV, which is the main terminal field for thalamic fibers, contained fewer VIP neurons than supragranular layers. In the light microscope, however, PHA-L-labeled fibers appeared to contact the somata or proximal dendrites of 60-86% of the layer IV VIP neurons . By contrast, only 18-35% of the VIP neurons in the supragranular layers, which receive a moderately dense projection from the VPM, appeared to be contacted. PHA-L-labeled boutons were seen close to 13-25% of infragranular VIP-positive cells. Electron microscopy showed that thalamic fibers formed at most four asymmetric synapses on a single layer IV, VIP-positive neuron. Although the proportion of VIP-positive neurons with labeled synapses was lower in supragranular layers, most of them shared multiple asymmetric synapses with labeled thalamic fibers. Up to six labeled synapses were seen on individual VIP neurons in layer III. We conclude that subpopulations of VIP-immunoreactive neurons, located in layers IV, III, and II are directly innervated by the VPM. These neurons may be involved in the initial stages of cortical processing of sensory information from the large, mystacial vibrissae. Since VIP is known to be colocalized with the inhibitory transmitter GABA, it is likely that VIP neurons participate in the shaping of the receptive fields in the barrel cortex.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the nerve growth factor (NGF) gene family, have been suggested to play a role in experience-dependent modification of neural networks in the developing nervous system. In this study we addressed the question of whether these neurotrophins are involved in long-term potentiation (LTP) in developing visual cortex. We recorded layer II/III field potentials and whole-cell currents evoked by test stimulation of layer IV at 0.1 Hz in visual cortical slices prepared from young rats (postnatal day 15-25) and observed effects of BDNF, NT-3, and NGF on these responses. Then we analyzed the effects of these neurotrophins on LTP induced by tetanic (Theta-burst type) stimulation of layer IV. We found that BDNF at 200 ng/ml potentiated field potentials and EPSCs in most cases and that this potentiation lasted after cessation of the BDNF application. At the concentration of 20 ng/ml, BDNF did not show such an effect, but it enhanced the magnitude of expressed LTP. On the other hand, NT-3 and NGF had none of these effects. Immunohistochemical staining of slices with antibody against BDNF showed that exogenous BDNF penetrated into the whole slice within approximately 5 min of its application. The actions of BDNF were blocked by preincubation of slices with TrkB-IgG fusion protein, a BDNF scavenger, or coapplication of K252a, an inhibitor for receptor tyrosine kinases. TrkB-IgG or K252a itself completely blocked LTP, suggesting that endogenous BDNF or another TrkB ligand plays a role in LTP in the developing visual cortex.  相似文献   

7.
Field potential recording was used to investigate properties of synaptic transmission and long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in both hippocampal slices of mutant mice in which the alpha-subunit of the olfactory cyclic nucleotide-gated channel (alpha3/OCNC)1 was rendered null and also in slices prepared from their wild-type (Wt) littermates. Several measures of basal synaptic transmission were unaltered in the OCNC1 knockout (KO), including maximum field excitatory postsynaptic potential (fEPSP) slope, maximum fEPSP and fiber volley amplitude, and the function relating fiber volley amplitude to fEPSP slope and paired-pulse facilitation. When a high-frequency stimulation protocol was used to induce LTP, similar responses were seen in both groups [KO: 1 min, 299 +/- 50% (mean +/- SE), 60 min, 123 +/- 10%; Wt: 1 min, 287 +/- 63%; 60 min, 132 +/- 19%). However, on theta-burst stimulation, the initial amplitude of LTP was smaller (1 min after induction, 147 +/- 16% of baseline) and the response decayed faster in the OCNC1 KO (60 min, 127 +/- 18%) than in Wt (1 min, 200 +/- 14%; 60 min, 169 +/- 19%). Analysis of waveforms evoked by LTP-inducing tetanic stimuli revealed a similar difference between groups. The development of potentiation throughout the tetanic stimulus was similar in OCNC1 KO and Wt mice when high-frequency stimulation was used, but OCNC1 KO mice showed a significant decrease when compared with Wt mice receiving theta-burst stimulation. These results suggest that activation of cyclic nucleotide-gated channels may contribute to the induction of LTP by weaker, more physiological stimuli, possibly via Ca2+ influx.  相似文献   

8.
In the production of steel rollers, surface decarburization may occur in the course of heating before quenching. Means of more effective protection against such decarburization are considered in the case of the 35X CA steel barrel of wrapped rollers for the ShPS 30-80 ball-rolling mill. A technological protocol for the heat treatment of the rollers is developed. It is shown that protection by means of nitrogen + a carburizing agent + a muffle increases the likelihood of the desired outcome (no decarburized surface layer and hardness no less than 45 HRC) by 31.9% in comparison with protection by means of Barier protective compound + a carburizing agent + a muffle. On average, 450–470 t of grinding balls (diameter 40 mm; hardness groups III and IV) may be rolled in a complete run (to regrinding) on rollers heat-treated by the proposed protocol.  相似文献   

9.
The interaction of chronic in vivo lead exposure and acute in vitro ethanol treatment on synaptic neurotransmission and plasticity were studied using extracellular electrophysiological techniques in CA1 region of hippocampal brain slices from adult rats. Neither chronic lead exposure nor acute ethanol treatment had any significant effect on field excitatory postsynaptic potentials (EPSPs). In vivo lead exposure enhanced short-term potentiation (STP, potentiation that decays within 30 min) by 21% shortly after 'weak' tetanus, but had no effect on long-term potentiation (LTP, sustained at least 1 h). In vitro bath application of 60 mM ethanol inhibited STP by 35% and blocked LTP induced by 'weak' tetanus in slices from Pb exposed rats (500 ppm lead acetate, 56-70 days), while having no effect on STP or LTP in slices from control counterpart Na-exposed rats (pair-fed 216 ppm sodium acetate). In contrast, 'strong'-tetanus-induced LTP was abolished in Pb-exposed slices, and 60 mM ethanol slightly inhibited STP and blocked LTP in slices from Na-exposed rats. These differences could not be explained by differences in ethanol inhibition of NMDA-mediated field EPSPs because they were similarly reduced in slices from Na-exposed (30%) and Pb-exposed (25%) rats. These findings suggest that the strength of the tetanus used determines whether or not synaptic plasticity is blocked by either chronic lead exposure or acute ethanol treatment, and that even in adult rats, hippocampal synaptic LTP can be compromised by combined exposure to ethanol and lead. More importantly, these findings suggest the consequences of combined lead exposure and alcohol abuse in the adult human population may not be fully recognized yet.  相似文献   

10.
The involvement of nitric oxide in anoxia-induced long-term potentiation (anoxic LTP) of synaptic transmission was investigated in CA1 neurons of rat hippocampal slices using intracellular recording techniques in vitro. In response to superfusion of an anoxic artificial cerebral spinal fluid saturated with 95% N2-5% CO2, the excitatory postsynaptic potential (EPSP) generated in hippocampal CA1 neurons by stimulation of the Schaffer collateral/commissural afferent pathway was completely abolished within 10 min of anoxia. On return to reoxygenated medium, the EPSP returned to the control value within 10 min and was subsequently and progressively potentiated to reach a plateau 15-20 min after return to oxygen. This anoxia-induced persistent increase in synaptic transmission lasted for more than 1 h. Application of the nitric oxide synthase inhibitors 7-nitroindazole (7-NI) or L-N(G)-nitroarginine (NOARG) produced no effects on the baseline EPSP amplitude, but effectively attenuated the anoxic LTP. The inhibitory effects of both 7-NI and NOARG on the anoxic LTP were blocked by L-arginine, a substrate for nitric oxide synthase. These results suggest that nitric oxide is required for the generation of anoxia-induced LTP of glutamatergic synaptic transmission in the CA1 region of the rat hippocampus.  相似文献   

11.
It is difficult to induce long-term potentiation (LTP) in CA1 of hippocampal slices from 120-day-old rats when a single 100 Hz, 1 s tetanus is administered in extracellular solution containing 2.0 mM calcium and 2.0 mM magnesium. However, in the presence of 2.5 mM calcium and 1.3 mM magnesium LTP is reliably induced by this same stimulus. Although the amplitude of LTP is similar to that observed in slices from 30-day-old rats, LTP in slices from mature rats is not inhibited by MK-801 but is blocked by nifedipine. These results suggest that factors contributing to LTP in slices from mature rats require careful consideration under different experimental paradigms.  相似文献   

12.
The evoked potential recorded in the rat piriform cortex in response to electrical stimulation of the olfactory bulb is composed of an early component occasionally followed by a late component (60-70 ms). We previously showed that the late component occurrence was enhanced following an olfactory learning. In the present study carried out in naive rats, we investigated the precise conditions of induction of this late component, and its spatiotemporal distribution along the olfactory pathways. In the anaesthetized rat, a stimulating electrode was implanted in the olfactory bulb. Four recording electrodes were positioned, respectively, in the olfactory bulb, the anterior and posterior parts of the piriform cortex, and the entorhinal cortex. Simultaneous recording of signals evoked in the four sampled structures in response to stimulation of the olfactory bulb revealed that the late component was detected in anterior and posterior piriform cortex as well as in entorhinal cortex, but not in the olfactory bulb. The late component occurred reliably for a narrow range of low intensities of stimulation delivered at frequencies not exceeding 1 Hz. Comparison of late component amplitude and latency across the different recorded sites showed that this component appeared first and with the greatest amplitude in the posterior piriform cortex. In addition to showing a functional dissociation between anterior and posterior parts of the piriform cortex, these data suggest that the posterior piriform cortex could be the locus of generation of this late high amplitude synchronized activity, which would then propagate to the neighbouring regions.  相似文献   

13.
Supragranular pyramidal neurons in the adult rat auditory cortex (AC) show marked long-term potentiation (LTP) of population spikes after tetanic white matter stimulation (TS). For determination of whether this marked LTP is specific to AC, LTP in rat AC slices was compared with LTP in slices of the visual cortex (VC). The amplitude of TS-induced LTP in AC was twice that in VC. LTP of EPSPs was also studied with perforated patch or whole-cell recording. Although the amplitude of TS-induced LTP of EPSPs in AC was larger that in VC, no cortical difference was found in LTP elicited by low-frequency stimulation paired with current injection. Neocortical LTP is dependent on the activation of NMDA receptors, and induction of LTP requires postsynaptic depolarization for removal of Mg2+ blockade of NMDA receptors. The postsynaptic depolarization elicited by TS in supragranular pyramidal neurons in AC was significantly larger than that in VC. Cutting of supragranular horizontal connections resulted in a decrease in the depolarization amplitude in AC but an increase in the depolarization amplitude in VC. The cortical difference in TS-induced LTP was diminished in the slices in which horizontal connections in supragranular layers were cut. The estimated density of horizontal axon collaterals of supragranular pyramidal neurons in AC was approximately twice that in VC. These results strongly suggest that the marked polysynaptic and postsynaptic depolarization during TS and the resulting marked LTP in AC are attributed to well developed horizontal axon collaterals of supragranular pyramidal neurons in AC.  相似文献   

14.
The prelimbic region of medial frontal cortex in the rat receives a direct input from the hippocampus and this functional connection is essential for aspects of spatial memory. Activity-dependent changes in the effectiveness of synaptic transmission in the medial frontal cortex, namely long-term potentiation (LTP) and long-term depression (LTD) can persist for tens of minutes or hours and may be the basis of learning and memory storage. Glutamatergic activation of ionotropic receptors is required to induce both LTP and LTD. We now present evidence of the involvement of metabotropic glutamate receptors in LTP in isolated slices of frontal cortex. Repetitive bursts of stimulation at theta frequencies (TBS) were applied to layer II, and monosynaptic EPSPs were monitored in layer V neurons of the prelimbic area. TBS was found to be more effective at inducing LTP than tetanic stimulation at 100 Hz and produced LTP that lasted >30 min in 8 out of 14 neurons. Tetanic stimulation at 100 Hz in the presence of the N-methyl--aspartate (NMDA)-antagonist 2-amino-5-phosphonopentanoate (AP5) was reported to be a reliable method of inducing LTD in prelimbic cortex (). However we found that this protocol did not facilitate the induction of LTD. The role of metabotropic glutamate receptors (mGluR) in LTP was assessed by using the selective, broad-spectrum antagonist (R, S)-alpha-methyl-4- carboxyphenylglycine (MCPG). This drug significantly reduced the incidence of LTP after TBS to only 1 of 14 neurons (P < 0.02, chi2 test). The pooled responses to TBS in MCPG showed significantly reduced potentiation [(P < 0.02, analysis of variance (ANOVA)]. The broad-spectrum mGluR agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and the selective group I agonist S-3 hydroxyphenylglycine(S-3HPG) both produced membrane depolarization, an increase in number of spikes evoked by depolarizing current pulses, and a reduction in the afterhyperpolarization. Similar effects were produced by these agonists even when synaptic transmission was blocked by use of the gamma-aminobutyric acid-B (GABAB) receptor agonist, 200 microM baclofen, which suggests that group I mGluRs are present on layer V neurons. We conclude that mGluRs participate in the production of LTP in prelimbic cortex, and that this excitatory effect could be mediated by the postsynaptic group I mGluRs.  相似文献   

15.
Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABA(A) receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IV's output to non-layer IV neurons. The latter's surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.  相似文献   

16.
1. The effects of protein kinase inhibitors on N-methyl-D-aspartate (NMDA)-receptor-mediated, voltage-dependent calcium channel (VDCC)-mediated, and 100-Hz long-term potentiation (LTP) were studied in area CA1 of rat hippocampal slices. 2. A 25-Hz tetanus induced a quickly developing potentiation that was blocked by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV) and was not affected by the L-type VDCC inhibitor nifedipine, suggesting that it was mediated by NMDA receptors (NMDA-LTP). 3. Application of a 200-Hz tetanus in APV induced a slowly developing NMDA-receptor-independent potentiation that was blocked by nifedipine and thus named VDCC-LTP. NMDA- and VDCC-LTP reached comparable magnitudes despite their different induction parameters and developmental kinetics. 4. Bath perfusion of the broad-spectrum serine/threonine kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) blocked NMDA-LTP but not VDCC-LTP, whereas the tyrosine kinase inhibitors genistein and lavendustin A blocked VDCC-LTP but not NMDA-LTP. These results suggest a differential involvement of H-7-sensitive serine/threonine kinases and tyrosine kinases in the two forms of LTP. 5. Tetanization of 200 Hz in control media resulted in a compound potentiation twice as large as NMDA- or VDCC-LTP, implying that the two forms of LTP did not facilitate or reduce each other's expression. The often-used 100-Hz tetanus (1 s twice) induced a potentiation that was comparable in size with the 200-Hz compound LTP. Nifedipine, genistein, and lavendustin A reduced the 100-Hz LTP by approximately 50%, suggesting that this LTP is also a compound potentiation consisting of NMDA- and VDCC-mediated components and their corresponding signal transduction pathways.  相似文献   

17.
In 1968, the method of human percutaneous microneurography with solid tungsten electrodes was introduced. Since then many investigators used this technique to study peripheral mechanisms in the somatosensory, motor and autonomic systems of conscious humans. Although some modifications of the method were described, the basic construction of the recording electrode has remained the same over the years. In the present protocol we describe in detail the procedures of microneurography using a thin diameter concentric needle electrode. There are some advantages with the concentric electrodes in comparison with the tungsten needles: (1) the electrical and mechanical properties of the electrode are stable which allows repeated use, (2) its restricted and one-dimensionally directed recording area provides the possibility to study topographical aspects within even a part of a peripheral nerve fascicle, and (3) multi-channel recordings can be achieved by adding more recording surfaces to the electrode. Based on recent investigations evaluating the recording properties of concentric electrodes we propose a novel procedure for signal analysis where template matching is incorporated. The analyses described in this protocol might also be applicable for extracellular recordings from muscle or elsewhere within the nervous system.  相似文献   

18.
Field potential recordings were made from the dentate gyrus of urethane-anaesthetized rats in order to investigate the ability of 5 Hz stimulation to reverse long-term potentiation (LTP) induced by a high frequency tetanus. A 10 min train of 5 Hz was found to reverse LTP in a time-dependent fashion: as the interval between tetanus and 5 Hz was increased, LTP became progressively less susceptible to reversal. If 10 min or 30 min intervened between tetanization and 5 Hz stimulation, LTP was unaffected. These results indicate that dentate LTP in vivo exhibits a similar limited time window of vulnerability to reversal by low frequency stimulation to that previously reported in area CA1 in vitro.  相似文献   

19.
Mofidied limb electrode positions are often used in studies which require the recording of rest and exercise ECGs, whereby the arm electrodes are placed at the infraclavicular fossae and the left lef electrode on the left lower abdomen. The effect of the modified limb electrode positions on electrocardiographic waveforms was investigated in 68 supine adult male subjects at rest. The modification produced profound amplitude and waveform changes in the frontal plane ECG leads. The QRS axis shifted on the average by 16 degrees towards a more vertical position with considerable individual variation. Concomitant with the QRS axis shift, the R wave amplitude decreased in leads I and a VL and increased in leads II, III, and aVF. The S wave amplitude increased in leads III and aVF and decreased in lead III. The P and T wave amplitude changes were in a direction similar to those observed for the R waves: a reduction of the amplitude in aVL and an increase in II, III and aFV. Of importance to exercise ECG interpretation are the ST segment waveform changes: The ST slope decreased in aVL and increased in leads II, III and aVF. Waveform changes in the chest leads caused by the modification were less important although statistically significant. These systematic changes in recorded ECG waveforms arise from changes directions and strength of the lead vectors of the six frontal plane leads. Large inter-individual variations in the magnitude of the changes produced by modification of the limb electrode positions prevent effective systematic correction of the distortions by means of a universal lead transformation.  相似文献   

20.
Previous studies in the mouse have shown that neonatal lesions to the cholinergic basal forebrain (nBM) areas result in transient cholinergic depletion of neocortex and precipitate altered cortical morphogenesis. Lesion-induced morphological alterations in cortex persist into adulthood and are accompanied by behavioral changes, including spatial memory deficits. The current study investigated whether neonatal nBM lesions affect male and female mice differently in adulthood. Quantitative morphometry of cortical layer width was employed to assess alterations in cytoarchitecture in neonatally nBM-lesioned and littermate control mice of both sexes following behavioral testing. Our results showed significant decreases in cortical layer IV and V widths across somato/motor cortex in neonatally nBM lesioned mice of both sexes. Sexually dimorphic responses were observed in cortical layer II/III and total cortical width, limited to the area containing the "barrel cortex" representation of the whisker hairs. In lesioned females, layer II/III and total cortical width were decreased relative to female controls, and in lesioned males, layer II/III was increased relative to controls, whereas total cortical width was unchanged. In male but not female mice we observed significant correlations between decreased widths in layer IV and V and impaired performance on a spatial memory task. The current data further support a role of developing cholinergic cortical afferents in the modulation of cortical morphogenesis and cortical circuits involved in cognitive behaviors. In addition, our observations provide further evidence for sexually dimorphic development and function in cognitive centers of the rodent brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号