首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Developing low-cost oil refining methods is critical to business that use low-cost extrusion-expelling (E-E) to crush soybeans so they can capture the full value-added potential by marketing finished oils. Normal commodity (CO) and high-oleic (HO) E-E soybean oils were minimum-refined, gas-purged, and evaluated in frying applications. Degummed commodity oil (DCO) and minimum-refined (degummed and deacidified by Magnesol® adsorption) CO and HO oils were gas-purged with N2 for 1 h at 150°C. For DCO, gas purging did not affect PV, oxidative stability index (OSI), FFA, color, and total tocopherol content, but p-anisidine value (AV) increased. For CO, the minimum-refined, gas-purged oil did not differ from degummed, gas-purged oil in terms of p-AV, OSI, tocopherol content, and color. PV and FFA were lower in minimum-refined, gas-purged oil. Minimum-refined, gas-purged HO had much higher OSI, tocopherol, and FFA levels than did minimum-refined, gas-purged CO. The oils were used to fry bread cubes at 185°C. Fried bread cubes were stored under various conditions and evaluated for flavor attributes. These oils were different in toasty/nutty, beany/grassy, and oxidized flavors, as well as overall flavor intensity and desirability. Minimum-refined, gas-purged oils produced fried bread cubes having initial flavor profiles similar to those fried in commercial oil; however, when fresh oils were used they were less stable to oxidation. Longer heating times of the minimum-refined, gas-purged oils produced bread cubes with better oxidative stabilities than those produced with commercial oil.  相似文献   

2.
3.
The commercial feasibility of blending tuna oil into edible oil was studied from the perspective of stability under daily use conditions. A 210-day long-term simulation experiment was carried out on tuna oil blended with soybean or sesame oil at room temperature and cold storage (4°C). The bottle caps of all samples were opened manually and left open for 5 min every day to simulate the daily use of edible oil by consumers. The results indicate that cold storage can stabilize the blended oils containing tuna oil, and the peroxide and anisidine values of blended oil can be controlled at the recommended levels for at least 90 days by adding sesame oil. The polyunsaturated fatty acid content of all samples decreased by no more than 10% during the study term. The results of the sensory test indicated that in the daily use situation, the mixture of 20% tuna oil with 80% sesame oil could be stored at 4°C for up to 60 days without unacceptable quality and flavor changes. This study presents suggestions on how to design the packaging volume of the blended oil containing tuna oil, how to store the blended oil, and the term of best used before (once open) in practical commercial applications.  相似文献   

4.
Validity of the oil stability index (OSI) as an accelerated test of oxidative stability has been questioned because of its high holding temperature, 110°C, which may cause reactions that would not occur at lower temperatures. The purpose of this study was to characterize the usefulness of OSI as an accelerated oxidative stability test for oil of varying metal catalyst content by correlating OSI with the sensory induction period of light-exposed soybean oil. Five 400-g aliquots of soybean oil were placed in Erlenmeyer flasks and treated with increasing levels of a metal pro-oxidant, Cu2+ 2-ethylhexanoate. Pro-oxidant concentration ranged from 0 to 3.13×10−5 M. Five-gram aliquots were taken from duplicate flasks and immediately tested using the Oxidative Stability Instrument. Heating block temperature was 110°C. Sample flasks were then exposed to 800 footcandles of light and held at ambient temperature for 3 wk. One-gram aliquots were regularly withdrawn and evaluated for rancidity by 10 trained panelists to determine the sensory induction period of each sample. Aliquots were also taken to determine OSI of light-exposed oil samples. Sensory induction periods were correlated with OSI, resulting in a squared partial correlation coefficient (r 2) of 0.920. The r 2 for OSI of light-exposed oil samples ranged from 0.897 to 0.979. OSI appears to be an acceptable accelerated method for measuring the oxidative stability of light-exposed soybean oil that varies in metal catalyst content.  相似文献   

5.
The percentages of oleate (18∶1), linoleate (18∶2), and linolenate (18∶3) in blended soybean oils (SBO) were evaluated for their impact on flavor stability and quality in fried foods. Six SBO treatments, including a control (conventional SBO, 21.5% 18∶1) and a high-18∶1 SBO (HO, 79% 18∶1), were tested. In addition, these two oils were mixed in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% 18∶1, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. Also, a low-18∶3 (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments ×3 replicates). The fresh and stored bread cubes fried in 79%OA were second to the cubes fried in LL in overall flavor quality, were the weakest in intensity of stale, grassy, fishy, cardboard, and burnt flavors by sensory evaluation, and contained the least amounts of hexanal, hexanal, t-2-heptenal, t,t-2,4-nonadienal, and t,t-2,4-decadienal in volatile analysis. Other treatments were intermediate in these sensory and instrumental evaluations, as related to their 18∶1, 18∶2, and 18∶3 concentrations. In general, the results suggested that the overall flavor stability and eating quality of foods fried in the six oil treatments from the best to the poorest would be: LL≥79%OA, 65%OA, 51%OA, 37%OA, and control.  相似文献   

6.
The aim of the study was to determine the resistance to crystallization of palm olein (POo) with soybean oil (SBO) at different temperatures. POo of iodine value (IV) 65 gave better resistance to crystallization than POo of IV 60 or IV 63. For applications such as salad oil, the use of POo of IV 65 is limited to 30% when blended with SBO. If POo of either IV 60 or IV 63 is chosen, its use in salad oil is limited to 10% only. However, for applications other than salad oil, such as for cooking or frying, 100% POo of any IV could be used. For cold climates, the amount of POo (IV 60 or 63) recommended to get a clear oil is 10–30%. Alternatively, up to 40% POo of IV 65 can be blended with SBO. For temperate climates, the amount of POo (IV 60 or 63) recommended can be up to 60%. With POo of IV 65, the amount recommended is as high as 80–90% for application as a cooking or frying oil.  相似文献   

7.
The objective of this work was to study the frying stability of soybean oil (SBO) with reduced linoleate (18∶2) and linolenate (18∶3) and elevated oleate (18∶1) contents. High-oleate SBO [HO SBO, 79% oleic acid (OA)] and a control (conventional SBO, 21.5% OA) were tested as is, as well as blended in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. In addition, a low-linolenate (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments×3 replicates). We hypothesized that stability indicators would be indirectly related to the total 18∶2 plus 18∶3 percentages and/or the calculated oxidizability. In general, the results were fairly predictable based on total 18∶2 and 18∶3 concentrations. The overall frying stability of the six oil treatments, from the best to the poorest, was: 79%OA, 65%OA, 51%OA, LL≥37%OA, and the control, with respective total compositions for 18∶2 plus 18∶3 of 10.3, 23.6, 36.3, 59.6, 48.9, and 62.8%. The greatly reduced concentration of 18∶3 in the LL SBO made it more stable than the 37%OA, even though the combined composition of 18∶2 and 18∶3 of LL was greater than that of the 37%OA. Blending conventional SBO with HO SBO had a profound effect on the oxidative stability index and color of the blended oils, but the values were not linearly predictable by the percentage of control in the blended oil. Other stability indices, including calculated oxidizability, calculated iodine value, conjugated dienoic acid value, and viscosity, changed in linear response to an increased proportion of the control in the blends.  相似文献   

8.
Menhaden oil (MO) and partially hydrogenated menhaden oil (PHMO) were dry-fractionated and solvent-fractionated from acetone. After conversion to fatty acid methyl esters, the compositional distribution of saturated, monounsaturated, trans, and n−3 polyunsaturated fatty acids (PUFA) in the isolated fractions was determined by gas chromatography. Acetone fractionation of MO at −38°C significantly increased the n−3 PUFA content in the liquid fractions over that of starting MO (P<0.05). For PHMO, liquid fractions obtained by low-temperature crystallization (−38, −18, and 0°C) from acetone showed significant increases (P<0.05) in monounsaturated fatty acid (MUFA) content over that of the starting PHMO. For selected MUFA-enriched fractions, reversed-phase high-performance liquid chromatography (HPLC) was used to separate, isolate, and characterize the major triacylglycerol (TAG) molecular species present. Thermal crystallization patterns for these fractions also were determined by differential scanning calorimetry (DSC). The results demonstrated that under the appropriate conditions it is possible to dry-fractionate or solvent-fractionate MO and PHMO into various solid and liquid fractions that are enriched in either saturated, monounsaturated, polyunsaturated, or the n−3 classes of fatty acids. Moreover, characterization of these TAG fractions by reversed-phase HPLC gives insight into the compositional nature of the TAG that are concentrated into the various fractions produced by these fractionation processes. Finally, the DSC crystallization patterns for the fractions in conjunction with their fatty acid compositional data allow for the optimization of the fractionation schemes developed in this study. This information allows for the production of specific TAG fractions from MO and PHMO that are potentially useful as functional lipid products.  相似文献   

9.
The oxidative deterioration of dry starch-oil composites was investigated by chemical and sensory methods. The composites were stored at 37°C for 63 d, and changes in the hexanal content and odor attributes were monitored. Analysis of the extracted oil showed that the first run through the drum dryer presented higher hexanal concentrations than the subsequent runs. Starch-oil composites from the first run though the drum dryer showed higher metal concentrations and higher odor ratings during storage time than the subsequent runs. There was a significant correlation between odor attributes and hexanal concentration in the first run. Since both the oxidation and the metal content were higher in the first run and decreased in further runs, we concluded that oxidation might have been induced by the presence of metal in the drum dryer. It is likely that during drum drying, the metal drum and knife surfaces became coated with soy oil, reducing both abrasion and metal contact with the product. Since many applications of the starch-oil composite technology require drum drying, it will be necessary to take measures to minimize metal contamination of the product, perhaps by discarding the initial portion of product, which contains the most metal.  相似文献   

10.
The oxidative stability of partially hydrogenated menhaden fish oil (PHMO) shortening/canola oil blends with added antioxidant tertiary butylhydroquinone (TBHQ) and various blended partially hydrogenated vegetable oil (PHVO) shortenings without antioxidant in aged cookies and crackers was analyzed by anisidine value (AV), peroxide value (PV), and Totox value. The results showed no significant differences (P<0.05) for PV, AV, or Totox value between the PHMO shortening containing TBHQ and the PHVO shortening in cookies, crackers, and deep-fried extruded snacks, except for the AV and Totox value of crackers.  相似文献   

11.
Improvement of oxidative stability of soybean oil by blending with a more stable oil was investigated. Autoxidation of blends and interesterified blends (9∶1, 8∶2, 7∶3 and 1∶1, w/w) of soybean oil and palm olein was studied with respect to fatty acid composition, fatty acid location and triacylglycerol composition. Rates of formation of triacylglycerol hydroproxides, peroxide value and volatiles were evaluated. The fatty acid composition of soybean oil was changed by blending. Linolenic and linoleic acids decreased and oleic acid increased. The triacylglycerol composition of blends and interesterified blends was different from that of soybean oil. Relative to soybean oil, LnLL, LLL, LLO, LLP, LOO and LLS triacylglycerols were lowered and POO, POP and PLP were higher in blends and interesterified blends (where Ln, L, O, P and S represent linolenic, linoleic, oleic, palmitic and stearic acids, respectively). Interesterification of the blends leads to a decrease in POO and POP and an increase in LOP. Linoleic acid concentration at triacylglycerol carbon-2 was decreased by blending and interesterification. Rates of change for peroxide value and oxidation product formation confirmed the improvement of soybean oil stability by blending and interesterification. But, blends were more stable than interesterified blends. Also, the formation of hexanal, the major volatile of linoleate hydroperoxides of soybean oil, was decreased by blending and interesterification.  相似文献   

12.
Commodity (normal) and high-oleic soybean oils extracted by extrusion-expelling (E-E) were minimally processed using water degumming and adsorptive deacidification to produce edible oil. Degummed and deacidified oils were deodorized at 150°C for 1 h by purging with N2, CO2, or steam. They were also conventionally deodorized for quality comparisons. Generally, the oxidative stability of the properly gas-purged commodity oils was better than that of the conventionally deodorized oils. Total tocopherols, FFA contents, and colors of the deodorized oils were not significantly different among the treatments. Sensory analysis of the oils showed that the toasty/nutty flavors of the gas-purged oils, especially for the degummed oils, were more intense than those of the conventionally deodorized oils. The beany flavors of gas-purged oils were not significantly different from those of conventionally deodorized oils, although the flavor intensities tended to be slightly higher in gas-purged oils. The overall flavor intensities of the gas-purged oils were similar to those of conventionally deodorized oils. Therefore, E-E soybean oil has the potential to be minimally refined to produce edible oil with good compositional and sensory qualities.  相似文献   

13.
Binary blends of canola oil (CO) and palm olein (POo) or fully hydrogenated soybean oil (FHSBO) were interesterified using commercial lipase, Lypozyme TL IM, or sodium methoxide. Free fatty acids (FFA) and soap content increased and peroxide value (PV) decreased after enzymatic or chemical interesterification. No difference was observed between the PV of enzymatically and chemically interesterified blends. Enzymatically interesterified fats contained higher FFA and lower soap content than chemically prepared fats. Slip melting point (SMP) and solid‐fat content (SFC) of CO and POo blends increased, whereas those of CO and FHSBO blends decreased after chemical or enzymatic interesterification. Enzymatically interesterified CO and POo blends had lower SMP and SFC (at some temperatures) than chemically interesterified blends. The status was reverse when comparing chemically and enzymatically interesterified CO and FHSBO blends. The induction period for oxidation at 120°C of blends decreased after interesterification. However, chemically interesterified blends were more oxidatively stable than enzymatically interesterified blends. Interesterified blends of CO and POo or FHSBO displayed characteristics suited to application as trans‐free soft tub, stick, roll‐in and baker's margarine, cake shortening and vanaspati fat.  相似文献   

14.
At present, two systems have been usually used to identify olive oil aroma: the official panel test, according to the European Union Regulation [1], and the gas chromatographic method and its improvements. However, both types of techniques have two principal disadvantages: They need a long time for analysis and cannot be applied on‐line. Recently, there has been increasing interest in the development of a new device, the so‐called “electronic nose”. The aim of this work is to perform both a review of these techniques used for olive oil sensory analysis and their advantages and disadvantages.  相似文献   

15.
硅油粘度对ABS/硅油混合物性能的影响   总被引:1,自引:0,他引:1  
朱伟平 《弹性体》1999,9(4):32-36
通过硅油粘度对ABS/硅油混合物性能的影响进行比较深入的研究,从而最终确定了制作门内基板、门立柱等轿车内装件用ABS/硅油混合物专用料所使用的硅油粘度范围。  相似文献   

16.
Lipase-catalyzed acidolysis of menhaden oil with a pinolenic acid (PLA) concentrate, prepared from pine nut oil, was studied in a solvent-free system. The PLA concentrate was prepared by urea complexation of the FA obtained by saponification of pine nut oil. Eight commercial lipases from different sources were screened for their ability to catalyze the acidolysis reaction. Two different types of structured lipids (SL) were synthesized. The first type, which has PLA residues as a primary FA residue at the sn-1,3 positions of the TAG, was synthesized using a 1,3-regiospecific lipase, namely, Lipozyme RM IM from Rhizomucor miehei. The second type of SL, which has PLA residues as a primary FA residue at both the sn-1,3 and sn-2 positions of the TAG, was synthesized using a nonspecific lipase, namely, Novozym 435 from Candida antarctica. The effects of variations in enzyme loading, temperature, and reaction time on PLA incorporation into the oil were monitored by GC analyses. The optimal temperature and enzyme loading for synthesis of the two types of SL were 50°C and 10% of the total weight of substrates for both enzymes. The optimal reaction time for the synthesis with Lipozyme RM IM was 16h, whereas the optimal reaction time for the synthesis mediated by Novozym 435 was 36 h. Pancreatic lipase-catalyzed sn-2 positional analyses were also carried out on the TAG samples.  相似文献   

17.
The usefulness of the Oil Stability Index (OSI) as an accelerated oxidative stability test for canola oil was studied by correlating the OSI with the induction period as determined by sensory analysis. Canola oil was treated by holding it for differing times (0, 1, 2, 3, 4, and 6 d) at elevated temperature (60°C) in the dark with agitation. The sensory induction period (SIP) was determined by storing the five treatments of oil and the control at 60°C in the dark with agitation and removing aliquots of oil for a nine-member sensory panel to evaluate over a 9-d period. The time it took for a treatment to reach an average sensory score of 5 (10-point scoring scale) was defined as the treatment’s SIP. OSI values were obtained on day 0 using a heating block temperature of 110°C and an air pressure of 6 psi. The relationship between SIP and OSI had a 0.89 coefficient of determination (r 2). This relationship may be sufficiently strong to warrant use of the OSI in industry applications but may not be ideal for more precise experimental studies of canola oil shelf life.  相似文献   

18.
Hydrogenated soybean oil, referred to as soywax by candle makers, is a renewable and biodegradable alternative to paraffin wax in candle manufacturing. Soywax was investigated for its tendency to produce soot as well as potentially harmful organic volatiles (acrolein, formaldehyde, and acetaldehyde) during combustion. Beeswax and paraffin candles were used as references. A considerable amount of soot was produced from the combustion of paraffin candles, but little or none was observed from soywax candles. Compared to paraffin candles, soywax candles burned at a significantly slower rate and required less air. Small amounts of formaldehyde were detected and quantified in the fumes of burning paraffin candles. However, formaldehyde, peaks found in the chromatograms of soy- and beeswax candles were similar to or slightly higher than that of the blank. Since soywax candles exhibited burning properties similar to those of beeswax candles, soywax shows promise in candle applications.  相似文献   

19.
赵永青  陈福泉  冯彦洪  瞿金平 《化工学报》2014,65(10):4197-4202
聚乳酸(PLA)与环氧大豆油(ESO)经熔融共混制得具有高韧性的PLA/ESO共混物,并研究了ESO含量对PLA微观形态、力学和流变性能的影响规律。结果表明:ESO可显著降低PLA的熔体黏度,提高PLA的韧性;PLA/ESO共混物在低ESO含量(10%)时为部分相容,而在高ESO含量(20%和30%)时发生了相分离,从而使共混物的断裂伸长率和冲击强度随ESO含量增加先增大后减小,且分别在ESO含量为20%和15%时达到最大值,约为PLA的17倍和2.9倍,而拉伸强度则随之减小。  相似文献   

20.
Frying performance of low-linolenic acid soybean oil   总被引:3,自引:3,他引:0  
The frying performance of low-linolenic acid soybean oil from genetically modified soybeans was examined. Partially hydrogenated and unhydrogenated low-linolenic acid soybean oils were compared to two partially hydrogenated soybean frying oils. Frying experiments utilizing shoestring potatoes and fish nuggets were conducted. Frying oil performance was evaluated by measuring free fatty acid content, p-anisidine value, polar compound content, soap value, maximal foam height, polymeric material content, and Lovibond red color. The hydrogenated low-linolenic soybean oil (Hyd-LoLn) consistently had greater (P<0.05) free fatty acid content and lower p-anisidine values and polymeric material content than did the other oils. Hyd-LoLn generally was not significantly different from the traditional oils for polar content, maximal foam height, and Lovibond red color. The low-linolenic acid soybean oil (LoLn) tended to have lower soap values and Lovibond red color scores than did the other oils. LoLn had consistently higher (P<0.05) p-anisidine values and polymeric material content than did the other oils, and LoLn generally was not different (P<0.05) from the traditional oils for polar content, maximal foam height, and free fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号