首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Egg deposition of the elm leaf beetle Xanthogaleruca luteola causes the emission of volatiles from its food plant, Ulmus minor. These volatiles are exploited by the egg parasitoid, Oomyzus gallerucae, to locate its host. In contrast to other tritrophic systems, the release of volatiles is not induced by feeding but by egg deposition. Previous investigations showed that the release is systemic and can be triggered by jasmonic acid. Comparison of headspace analysis revealed similarities in the blend of volatiles emitted following egg deposition and feeding. The mixture consists of more than 40 compounds; most of the substances are terpenoids. Leaves next to those carrying eggs emit fewer compounds. When treated with jasmonic acid, leaves emit a blend that consists almost exclusively of terpenoids. Dichloromethane extracts of leaves treated with jasmonic acid were also investigated. After separation of extracts of jasmonate induced elm leaves on silica, we obtained a fraction of terpenoid hydrocarbons that was attractive to the parasitoids. This indicates that jasmonic acid stimulates the production of terpenoid hydrocarbons that convey information of egg deposition to the parasitoid.  相似文献   

2.
Jasmonate signaling pathway plays an important role in induced plant defense against herbivores and pathogens, including the emission of volatiles that serve as attractants for natural enemies of herbivores. We studied the volatiles emitted from rice plants that were wounded and treated with jasmonic acid (JA) and their effects on the host-searching behavior of the rice brown planthopper, Nilaparvata lugens (Stål), and its mymarid egg parasitoid Anagrus nilaparvatae Pang et Wang. Female adults of N. lugens significantly preferred to settle on JA-treated rice plants immediately after release. The parasitoid A. nilaparvatae showed a similar preference and was more attracted to the volatiles emitted from JA-treated rice plants than to volatiles from control plants. This was also evident from greenhouse and field experiments in which parasitism of N. lugens eggs by A. nilaparvatae on plants that were surrounded by JA-treated plants was more than twofold higher than on control plants. Analyses of volatiles collected from rice plants showed that JA treatment dramatically increased the release of volatiles, which included aliphatic aldehydes and alcohols, monoterpenes, sesquiterpenes, methyl salicylate, n-heptadecane, and several as yet unidentified compounds. These results confirm an involvement of the JA pathway in induced defense in rice plants and demonstrate that the egg parasitoid A. nilaparvatae exploits plant-provided cues to locate hosts. We explain the use of induced plant volatiles by the egg parasitoid by a reliable association between planthopper feeding damage and egg presence.  相似文献   

3.
Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect’s larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1–L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-β-caryophyllene, and (E,E)-α-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.  相似文献   

4.
Systemically Induced Plant Volatiles Emitted at the Time of “Danger”   总被引:8,自引:0,他引:8  
Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack.  相似文献   

5.
Pieris brassicae L. butterflies secrete miriamides onto their eggs. These avenanthramide alkaloids are strong oviposition deterrents when sprayed onto a cabbage leaf. However, these compounds could not be detected in cabbage leaves from which egg batches had been removed two days after deposition and that still showed oviposition deterrency. It was concluded that the miriamides were not directly responsible for the avoidance by females of occupied leaves while searching for an oviposition site. Evidence was obtained that cabbage leaves themselves produce oviposition deterrents in response to egg batches. Fractions containing potent oviposition deterrents could be isolated from surface extracts of leaves from which previously laid egg batches had been removed. The term host marking pheromone that was used previously is not applicable in this case.  相似文献   

6.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

7.
Bean plants (Vicia faba L. and Phaseolus vulgaris L.) damaged by feeding activity of Nezara viridula (L.) (Heteroptera: Pentatomidae), and onto which an egg mass had been laid, produced volatiles that attracted the egg parasitoid Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae). Extracts of volatiles of broad bean and French bean plants induced by adults of N. viridula as a result of their feeding activity, oviposition activity, and feeding and oviposition activity combined were analyzed by gas chromatography-mass spectrometry (GC-MS), and tested in Y-tube olfactometer bioassays as attractants for T. basalis females. In extracts from undamaged leguminous plants, green-leaf volatiles were absent or scarcely detected, and monoterpenes and sesquiterpenes were present at trace levels. No significant differences were detected in the profiles of volatiles of undamaged plants, and undamaged plants on which bugs were allowed only to lay eggs. In contrast, feeding and oviposition by adults of N. viridula induced in both leguminous plants a significant increase in terpenoids such as linalool, (E)-beta-caryophyllene, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (3E)-4,8-dimethyl-1,3,7-nonatriene, which was induced only in French bean plants. Quantitative comparisons revealed increased levels of (E)-beta-caryophyllene in extracts from feeding-damaged plants with N. viridula egg masses compared to feeding-damaged plants without egg masses. In Y-tube olfactometer bioassays, T. basalis females were attracted by extracts of both leguminous plants only when N. viridula adults were allowed to feed and oviposit upon them. Fractionation of extracts of volatiles from broad bean plants with N. viridula feeding damage and egg masses yielded two fractions. but only the fraction containing (E)-beta-caryophyllene was attractive to the egg parasitoid. These findings indicate that N. viridula feeding and oviposition induce leguminous plants to produce blends of volatiles that are characterized by increased amounts of (E)-beta-caryophyllene, and these blends attract female T. basalis. The role of (E)-beta-caryophyllene as a potential synomone for T. basalis is discussed.  相似文献   

8.
MANZANO  C  FERNANDEZ  PC  HILL  JG  LUFT ALBARRACIN  E  VIRLA  EG  COLL ARÁOZ  MV 《Journal of chemical ecology》2022,48(7-8):650-659

Parasitoids are known to exploit volatile cues emitted by plants after herbivore attack to locate their hosts. Feeding and oviposition of a polyphagous herbivore can induce the emission of odor blends that differ among distant plant species, and parasitoids have evolved an incredible ability to discriminate them and locate their hosts relying on olfactive cues. We evaluated the host searching behavior of the egg parasitoid Cosmocomoidea annulicornis (Ogloblin) (Hymenoptera: Mymaridae) in response to odors emitted by two taxonomically distant host plants, citrus and Johnson grass, after infestation by the sharpshooter Tapajosa rubromarginata (Signoret) (Hemiptera: Cicadellidae), vector of Citrus Variegated Chlorosis. Olfactory response of female parasitoids toward plants with no herbivore damage and plants with feeding damage, oviposition damage, and parasitized eggs was tested in a Y-tube olfactometer. In addition, volatiles released by the two host plant species constitutively and under herbivore attack were characterized. Females of C. annulicornis were able to detect and significantly preferred plants with host eggs, irrespectively of plant species. However, wasps were unable to discriminate between plants with healthy eggs and those with eggs previously parasitized by conspecifics. Analysis of plant volatiles induced after sharpshooter attack showed only two common volatiles between the two plant species, indole and β-caryophyllene. Our results suggest that this parasitoid wasp uses common chemical cues released by many different plants after herbivory at long range and, once on the plant, other more specific chemical cues could trigger the final decision to oviposit.

  相似文献   

9.
The origin of olfactory stimuli involved in the host microhabitat location inCotesia flavipes, a parasitoid of stem-borer larvae, was investigated in a Y-tube olfactometer. The response of femaleC. flavipes towards different components of the plant-host complex, consisting of a maize plant infested with two or more larvae of the stem borerChilo partellus, was tested in dualchoice tests. The concealed lifestyle of the stem-borer larvae did not limit the emission of volatiles attractive to a parasitoid. A major source of the attractive volatiles from the plant-host complex was the stem-borer-injured stem, including the frass produced by the feeding larvae. Moreover, the production of volatiles attractive to a parasitoid was not restricted to the infested stem part but occurs systemically throughout the plant. The uninfested leaves of a stem-borer-infested plant were found to emit volatiles that attract femaleC. flavipes. We further demonstrate that an exogenous elicitor of this systemic plant response is situated in the regurgitate of a stem-borer larva. When a minor amount of regurgitate is inoculated into the stem of an uninfested plant, the leaves of the treated plant emit volatiles that attract femaleC. flavipes.  相似文献   

10.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

11.
Plants attacked by insects release volatile compounds that attract the herbivores' natural enemies. This so-called indirect defense is plastic and may be affected by an array of biotic and abiotic factors. We investigated the effect of fungal infection as a biotic stress agent on the emission of herbivore-induced volatiles and the possible consequences for the attraction of two parasitoid species. Maize seedlings that were simultaneously attacked by the fungus Setosphaeria turcica and larvae of Spodoptera littoralis emitted a blend of volatiles that was qualitatively similar to the blend emitted by maize that was damaged by only the herbivore, but there was a clear quantitative difference. When simultaneously challenged by fungus and herbivore, the maize plants emitted in total 47% less of the volatiles. Emissions of green leaf volatiles were unaffected. In a six-arm olfactometer, the parasitoids Cotesia marginiventris and Microplitis rufiventris responded equally well to odors of herbivore-damaged and fungus- and herbivore-damaged maize plants. Healthy and fungus-infected plants were not attractive. An additional experiment showed that the performance of S. littoralis caterpillars was not affected by the presence of the pathogen, nor was there an effect on larvae of M. rufiventris developing inside the caterpillars. Our results confirm previous indications that naïve wasps may respond primarily to the green leaf volatiles.  相似文献   

12.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

13.
Deterrence of repeated oviposition in sorghum shootflyAtherigona soccata   总被引:1,自引:0,他引:1  
The sorghum shootfly,Atherigona soccata, under low population density conditions lays one egg per sorghum plant. Possible regulatory mechanisms of this oviposition behavior are reported. The presence of an egg thoroughly washed and reattached to a leaf does not deter further oviposition, indicating the absence of visual cues. When washings from eggs were sprayed on sorghum plants, or when plants from which eggs had been removed were presented to a gravid female, significant deterrence was observed. Apparently a deterrent pheromone is associated with the water-soluble glue with which the females attach their eggs to the leaves. Some deterrent effect persists for at least 7 days.  相似文献   

14.
Several studies have shown that herbivore-induced plant volatiles act directly on herbivores and indirectly on their natural enemies. However, little is known about the effect of herbivore damage on resistant and susceptible plant cultivars and its effect on their natural enemies. Thus, the aim of this study was to evaluate the attraction of the herbivorous pentatomid bug Euschistus heros and its egg parasitoid Telenomus podisi to two resistant and one susceptible soybean cultivars with different types of damage (herbivory, herbivory+oviposition, and oviposition). In a Y-tube olfactometer, the parasitoids were attracted to herbivory and herbivory+oviposition damaged soybean plants when compared to undamaged soybean plants for the resistant cultivars, but did not show preference for the susceptible cultivar Silvania in any of the damage treatments. The plant volatiles emitted by oviposition-damaged plants in the three cultivars did not attract the egg parasitoid. In four-arm-olfactometer bioassays, E. heros females did not show preference for odors of damaged or undamaged soybean plants of the three cultivars studied. The Principal Response Curves (PRC) analysis showed consistent variability over time in the chemical profile of volatiles between treatments for the resistant cultivar Dowling. The compounds that most contributed to the divergence between damaged soybean plants compared to undamaged plants were (E,E)-α-farnesene, methyl salicylate, (Z)-3-hexenyl acetate, and (E)-2-octen-1-ol.  相似文献   

15.
Herbivore-induced plant volatiles are important host finding cues for larval parasitoids, and similarly, insect oviposition might elicit the release of plant volatiles functioning as host finding cues for egg parasitoids. We hypothesized that egg parasitoids also might utilize HIPVs of emerging larvae to locate plants with host eggs. We, therefore, assessed the olfactory response of two egg parasitoids, a generalist, Trichogramma pretiosum (Tricogrammatidae), and a specialist, Telenomus remus (Scelionidae) to HIPVs. We used a Y-tube olfactometer to tests the wasps’ responses to volatiles released by young maize plants that were treated with regurgitant from caterpillars of the moth Spodoptera frugiperda (Noctuidae) or were directly attacked by the caterpillars. The results show that the generalist egg parasitoid Tr. pretiosum is innately attracted by volatiles from freshly-damaged plants 0–1 and 2–3 h after regurgitant treatment. During this interval, the volatile blend consisted of green leaf volatiles (GLVs) and a blend of aromatic compounds, mono- and homoterpenes, respectively. Behavioral assays with synthetic GLVs confirmed their attractiveness to Tr. pretiosum. The generalist learned the more complex volatile blends released 6–7 h after induction, which consisted mainly of sesquiterpenes. The specialist T. remus on the other hand was attracted only to volatiles emitted from fresh and old damage after associating these volatiles with oviposition. Taken together, these results strengthen the emerging pattern that egg and larval parasitoids behave in a similar way in that generalists can respond innately to HIPVs, while specialists seems to rely more on associative learning.  相似文献   

16.
We tested in the field the hypothesis that the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae, Melitaeinae) lays eggs on leaves of Lonicera implexa (Caprifoliaceae) plants with greater iridoid concentrations. We conducted our investigations in a Mediterranean site by analyzing leaves with and without naturally laid egg clusters. There were no significant differences in iridoid glycoside concentrations between leaves from plants that did not receive eggs and the unused leaves from plants receiving eggs, a fact that would seem to indicate that E. aurinia butterflies do not choose plants for oviposition by their iridoid content. However, the leaves of L. implexa that bore egg clusters had dramatically greater (over 15-fold) concentrations of iridoid glycosides than the directly opposite leaves on the same plant. These huge foliar concentrations of iridoids (15% leaf dry weight) may provide specialist herbivores with compounds that they either sequester for their own defense or use as a means of avoiding competition for food from generalist herbivores. Nevertheless, it may still be possible that these high concentrations are detrimental to the herbivore, even if the herbivore is a specialist feeder on the plant.  相似文献   

17.
Induction of plant defense in response to herbivory includes the emission of synomones that attract the natural enemies of herbivores. We investigated whether mechanical damage to Brussels sprouts leaves (Brassica oleracea var.gemmifera) is sufficient to obtain attraction of the parasitoidCotesia glomerata or whether feeding byPieris brassicae caterpillars elicits the release of synomones not produced by mechanically damaged leaves. The response of the parasitoidCotesia glomerata to different types of simulated herbivory was observed. Flight-chamber dual-choice tests showed that mechanically damaged cabbage leaves were less attractive than herbivore-damaged leaves and mechanically damaged leaves treated with larval regurgitant. Chemical analysis of the headspace of undamaged, artificially damaged, caterpillar-infested, and caterpillar regurgitant-treated leaves showed that the plant responds to damage with an increased release of volatiles. Greenleaf volatiles and several terpenoids are the major components of cabbage leaf headspace. Terpenoids are emitted in analogous amounts in all treatments, including undamaged leaves. On the other hand, if the plant is infested by caterpillars or if caterpillar regurgitant is applied to damaged leaves, the emission of green-leaf volatiles is highly enhanced. Our data are in contrast with the induction of more specific synomones in other plant species, such as Lima bean and corn.  相似文献   

18.
Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5®, were investigated for their impact on the flight response of two parasitoids, Cotesia plutellae and Diadromus collaris. Cotesia plutellae was attracted only to Plutella xylostella-infested cabbage plants in a wind tunnel after an oviposition experience. Female C. plutellae did not distinguish between P. xylostella-infested cabbage plants treated with neem and control P. xylostella-infested plants. However, females preferred infested cabbage plants that had been treated with syringa extract to control infested plants. Syringa extract on filter paper did not attract C. plutellae. This suggests that an interaction between the plant and the syringa extract enhances parasitoid attraction. Diadromus collaris was not attracted to cabbage plants in a wind tunnel and did not distinguish between caterpillar-damaged and undamaged cabbage plants. Headspace analysis revealed 49 compounds in both control cabbage plants and cabbage plants that had been treated with the syringa extract. Among these are alcohols, aldehydes, ketones, esters, terpenoids, sulfides, and an isothiocyanate. Cabbage plants that had been treated with the syringa extract emitted larger quantities of volatiles, and these increased quantities were not derived from the syringa extract. Therefore, the syringa extract seemed to induce the emission of cabbage volatiles. To our knowledge, this is the first example of a plant extract inducing the emission of plant volatiles in another plant. This interesting phenomenon likely explains the preference of C. plutellae parasitoids for cabbage plants that have been treated with syringa extracts.  相似文献   

19.
Host location and recognition by the egg parasitoid Trissolcus brochymenae were analyzed in terms of response to kairomones from several stages of its host, Murgantia histrionica. In a Y-tube olfactometer, parasitoid females responded by increasing residence time and/or reducing linear speed to chemical cues from gravid females, virgin females and males, fifth and third instars, and eggs. In an open arena, T. brochymenae females also responded to patches contaminated by chemicals from the host in the same stages, sexes, and/or physiological conditions as those tested in the olfactometer. The parasitoid displayed arrestment behavior, increased residence time, changed walking pattern, and intense substrate examination. When host egg clusters or glass dummies with a chemical egg extract were placed on the host-contaminated open arena, these elicited an orientation response in the parasitoid. In addition, the chemical egg extract without dummies elicited the same response, whereas dummies without extract did not influence parasitoid behavior. In a closed arena, the parasitoid females recognized and attempted to probe glass beads treated with chemical extracts of host eggs. There were no significant differences compared with their response to the host eggs, and they did not respond to untreated beads. Host recognition was elicited by chemicals from the follicular secretion used by the host to glue the eggs on the substrate. These results are discussed in relation to the level of the host selection sequence influenced by these cues.  相似文献   

20.
The female parasitic waspCotesia kariyai discriminated between the volatiles of corn leaves infested by younger host larvaePseudaletia separata (first to fourth instar) and uninfested leaves in a Y-tube olfactometer; the wasps were attracted to the infested leaves. In contrast, when corn plants were infested by the later stages (fifth and sixth instar) of the armyworm, the wasps did not distinguish between infested corn leaves and uninfested corn leaves in the olfactometer. Mechanically damaged leaves were no more attractive than undamaged leaves, and host larvae or their feces were not attractive to the parasitoid. Through chemical analysis, the herbivore-induced plant volatiles were identified in the headspace of infested corn leaves. The herbivore-induced volatiles (HIVs) constituted a larger proportion of the headspace of corn leaves infested by early instar armyworms than of corn leaves infested by late instar armyworms. Application of third-instar larval regurgitant onto artificially damaged sites of leaves resulted in emission of parasitoid attractants from the leaf, whereas leaves treated with sixth-instar regurgitant did not. The function of this herbivore-stage related specificity of herbivore-induced synomones is discussed in a tritrophic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号