首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of electrochemical behavior and determination of captopril, as an angiontensin-converting enzyme inhibitor, is reported on multi-walled carbon nanotube (MCNT) modified glassy carbon electrode (GCE) and hexacyanoferrate(II) (HCF) electrocatalyst. The cyclic voltammetric results indicate that MCNTs and HCF system can remarkably enhance electrocatalytic activity toward the oxidation of captopril in acidic solutions. It is leading to a considerable improvement of the anodic peak current for captopril, and allows the development of a highly sensitive voltammetric sensor for detection of captopril in pharmaceutical and clinical samples. The investigation of captopril oxidation on the iron oxide nanoparticles modified carbon paste electrode does not show any electrocatalytic effect on the oxidation of captopril, suggesting that iron oxide impurities in the MCNTs are not the active sites in captopril sensing. Under optimized conditions on MCNTs-HCF system, the proposed method with respect to other reported electrochemical methods shows wider dynamic range (0.5–600 μM) with suitable selectivity, practical detection limit of 0.2 μM and good precision (R.S.D. <3%).  相似文献   

2.
A highly sensitive electrochemical sensor for the determination of acetaminophen at the multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS) nanocomposite modified glassy carbon electrode is reported. The morphology of the MWCNT-ACS nanocomposite was characterized by field emission scanning electron microscopy. The electrocatalytic properties of the MWCNT-ACS nanocomposite modified glassy carbon electrode were characterized by cyclic voltammetry and square-wave voltammetry in the presence of acetaminophen. The MWCNT-ACS nanocomposite modified glassy carbon electrode exhibited the abilities to raise the current response and to decrease the electrooxidation potential. In cyclic voltammetric responses, the oxidation peak current of acetaminophen obtained at the MWCNT-ACS modified glassy carbon electrode was 100 times greater than that of bare glassy carbon electrode. The MWCNT-ACS nanocomposite modified glassy carbon electrode for the determination of acetaminophen displayed a sensitivity of 376.5 A M−1 cm−2 and a detection limit of 0.05 μM using square-wave voltammetry. The analytical applicability of the developed method was achieved by analyzing the content of acetaminophen in five commercial drugs without pretreatment.  相似文献   

3.
介绍了一种碳纳米管修饰电极的制备工艺,并对其电化学敏感性进行测试和分析.该工艺辅助聚合物聚酰亚胺,利用机械球磨、可控刻蚀等工艺,实现了碳纳米管的均一分布,露出碳纳米管的断口和缺陷.在玻碳电极上涂覆碳纳米管/聚酰亚胺复合膜,结合扫描电子显微镜观察,得到了可控、均一、稳定的电极界面.利用循环伏安法对电极进行性能测试,讨论了...  相似文献   

4.
A novel biocompatible environment friendly nanosilver Nafion®/nanoTiO2 Nafion® modified glassy carbon electrode was prepared by a simple procedure and characterized. This modified electrode was used as a sensing electrode for the detection of imidacloprid. Cyclic voltammetry, differential pulse voltammetry and amperometry were used in this work. The reduction potential of imidacloprid on this electrode is lower compared to other electrodes reported in the literature. The LOD and LOQ values obtained for the sensing of imidacloprid on this modified electrode are comparable to the values reported in the literature.  相似文献   

5.
应用吸附法将IgG抗原固定于多壁碳纳米管修饰的玻碳电极表面,制备用于IgG抗体检测的电化学免疫传感器。以辣根过氧化物酶为标记物,对苯二酚为底物,利用辣根过氧化物酶标记IgG抗体与待测IgG抗体竞争电极表面固定的IgG抗原,建立了免疫竞争法检测IgG抗体的高灵敏度电化学分析方法。碳纳米管的大比表面积和电化学催化作用,提高了分子识别物质的固定量和电化学检测的灵敏度。工作电位为 0.030 V(vs.SCE)时,响应电流与IgG抗体浓度在0.30~10μg/mL范围内呈良好的线性关系,检出限为0.11μg/mL。  相似文献   

6.
利用微波辅助功能化的单壁碳纳米管可以均匀分散于二次水中,并可以在玻碳电极表面形成稳定的薄膜,利用该修饰电极研究了鸟嘌呤与鸟嘌呤核苷的电化学行为及其测定,并对鸟嘌呤和鸟嘌呤核苷的分别或同时测定条件进行了优化.结果表明,与裸玻碳电极相比,鸟嘌呤及其核苷在该单壁碳纳米管修饰电极上的氧化峰电流和检测灵敏度大大提高,该方法检出限低、分析速度快.酸降解的DNA在该修饰电极上可以得到对应鸟嘌呤的灵敏溶出峰,峰电流与DNA浓度在一定范围内成线性关系.  相似文献   

7.
制备了一种基于活化的玻碳电极的新型电化学DNA生物传感器,可用于膀胱癌DNA的检测.通过循环伏安法(CV)实现玻碳电极在NaOH溶液中的刻蚀,使电极表面负载大量官能团,为DNA提供连接位点,由Laviron方程计算得到玻碳电极表面的羧基浓度为 1.022×10-6 mol/cm2.亚甲基蓝(MB)作为电化学检测的杂交指示剂.采用原子力显微镜(AFM)对刻蚀后的电极进行了形貌表征.在最优杂交条件下,通过差分脉冲法(DPV)计算出最佳检测限为5.677×10-13 mol/L(n=5),适用目标 DNA浓度范围1×10-8 mol/L~1×10-12 mol/L.该传感器有望用于实际样品中膀胱癌DNA的快速检测.  相似文献   

8.
A functional single-wall carbon nanotube film electrode (SWNTE) was constructed on the surface of inlaying ultra-thin carbon paste electrode (IUTCPE). The precursor film was formed by direct inlaying carbon paste onto nichrome substrate. Scanning electron microscope (SEM) was employed to characterize the electrode surface. The electrochemical behavior of SWNT/IUTCPE for xanthine (Xa), hypoxanthine (Hxa) and uric acid (UA) was investigated by various electrochemical techniques. The SWNT/IUTCPE exhibited an excellent electrocatalysis and enhancement of the current response for the purine derivatives. Three well-defined oxidation peaks of Xa, Hxa and UA were appeared at the electrode. The proposed electrode can be applied to determine Xa, Hxa and uric acid in human urine simultaneously without any pretreatment.  相似文献   

9.
This study reports the electrochemical modification of glassy carbon (GC) electrode surface with the electro-polymerized form of 1,10-phenanthroline monohydrate (PMH), the characterization of this polyphenanthroline modified electrode (PPMH/GC) and the electroanalytical application suitable for the determination of Cd(II) ions. The PPMH/GC electrode was characterized by cyclic voltammetry, chronoamperometry and atomic force microscopy and formation of polyphenanthroline layer grafted to surface of GC electrode was evidenced. Selectivity of PPMH/GC electrode towards heavy metal ions was investigated by square wave voltammetry. The PPMH/GC electrode was found to be suitable for selective determination of Cd(II) in the solutions containing the mixture of heavy metal ions and showed high stability and reproducibility. The analytical methodology was successfully applied for monitoring the toxic metal ions in real samples.  相似文献   

10.
Iron(II) phthalocyanine (FePc) modified multi-wall carbon nanotubes paste electrodes (MWCNTPEs) were used as voltammetric sensors to selectively detect dopamine (DA) in the presence of serotonin (5-HT). The electrochemical behavior of DA at the new modified electrode was investigated using CV. The enhanced current response of DA indicates that FePc modification of the MWCNTPE surface results in a high catalytic activity for the redox reaction of DA. Differential pulse voltammetry was applied in detection of DA and 5-HT at FePc-MWCNTPE. The method parameters were optimized. Detection limit of 2.05 × 10−7 M was obtained for DA by using the electrocatalytic oxidation signal corresponding to the FeII/FeIII redox process. The separation between the peak potentials of DA and 5-HT is 170 mV which is large enough for the simultaneously, selective determination of the two chemical species in their mixtures. There was no electrochemical response for ascorbic acid (AA) added in the sample. The monoamine neurotransmitter measuring method has been tested in analyzing deproteinized serum samples.  相似文献   

11.
The electrocatalysis of hydrazine oxidation by poly-ethylenedioxy pyrrole (PEDOP)-coated MWCNTs-palladium nanoparticles [PEDOP/MWCNTs-Pd] was investigated as an electrochemical sensor on the surface of glassy carbon electrode (GCE) in aqueous medium. Electrochemical oxidation of hydrazine in phosphate buffer (pH 7.4) was performed using cyclic voltammetry (CV) and chronoamperometry (CA) methods. Using the proposed electrode, the catalytic oxidation peak current of hydrazine was high and the overpotential of its oxidation decreased. Based on the obtained results, a mechanism for electrooxidation of hydrazine at [PEDOP/MWCNTs-Pd/GCE] demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. The experimental results showed that the mediated oxidation peak currents of the hydrazine were linearly dependent on the concentration of hydrazine in the range of 1.0 × 10−7 to 5.0 × 10−3 M. The detection limit (S/N = 3) was found to be 4 × 10−8 M with a fast response time of 10 s.  相似文献   

12.
The glassy carbon electrode coated with electropolymerized methyl-red film, 1.2 × 10−6 m in thickness, (PMRE) showed high sensitivity towards Hg(II) ions. PMREs were adopted to accumulate and detect Hg(II) ions in a pH 2.56 Britton–Robinson buffer solution. Cyclic voltammogram of the accumulated Hg species on PMREs exhibited an anodic wave at 0.64 V and a cathodic wave at 0.13 V, due to the oxidation of accumulated Hg species on PMREs and the reduction of Hg(II) ions in the solution, respectively. For this heterogeneous adsorption of Hg(II) ions onto PMREs, the maximum surface concentration, adsorption equilibrium, and Gibbs energy change were evaluated to be 5.12 × 10−6 mol m−2, 3.7 × 105 l mol−1, and −30.1 kJ mol−1, respectively. The anodic peak current at 0.64 V was linear with the concentration of Hg(II) ions in the range of 1.1 × 10−10 to 1.1 × 10−7 M with a detection limit of 4.4 × 10−11 M. The proposed method was utilized successfully for the detection of Hg(II) ions in the lake water.  相似文献   

13.
The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L−1 KNO3 with pH adjusted to 2.25 with HNO3, an accumulation potential of −0.3 V vs. Ag/AgCl (3.0 mol L−1 KCl) for 300 s and a scan rate of 100 mV s−1. Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 × 10−8 to 1.60 × 10−5 mol L−1 with a detection limit of 1.00 × 10−8 mol L−1. The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level.  相似文献   

14.
研究了聚L-半胱氨酸修饰玻碳电极的制备及其抗坏血酸在该修饰电极上的电化学特性,建立了线性扫描溶出伏安法测定抗坏血酸的电化学分析新方法.在pH4.0的磷酸盐缓冲溶液中,用该电极测定抗坏血酸的线性范围为:2.0 ×10-6~4.0×10-3mol/L,检出限(信噪比=3)为1.0×10-7mol/L.对1.0×10-4mol/L抗坏血酸平行测定10次,相对标准偏差为1.3%.该电极具有良好的重现性和稳定性,已用于药剂中抗坏血酸的测定,结果令人满意.  相似文献   

15.
For the first time a novel derivatized multi-walled carbon nanotubes-based Pb2+ carbon paste electrode is reported. The electrode with optimum composition, exhibits an excellent Nernstian response to Pb2+ ion ranging from 5.9 × 10−10 to 1.0 × 10−2 M with a detection limit of 3.2 × 10−10 M and a slope of 29.5 ± 0.3 mV dec−1 over a wide pH range (2.5-6.5) with a fast response time (25 s) at 25 °C. Moreover, it also shows a high selectivity and a long life time (more than 3 months). Importantly, the response mechanism of the proposed electrode was investigated using AC impedance technique. Finally, the electrode was successfully applied for the determination of Pb2+ ion concentration in environmental samples, e.g. soils, waste waters, lead accumulator waste and black tea, and for potentiometric titration of sulfate anion.  相似文献   

16.
A novel voltammetric sensor based on chemically modified bentonite–porphyrin carbon paste electrode (MBPCE) has been introduced for the determination of trace amount of Mn(II) in wheat flour, wheat rice and vegetables. In this method Mn(II) gives well-defined voltammetric peak at the pH range of 3.5–7.5. For the preliminary screening purpose, the catalyst was prepared by modification of bentonite with porphyrin and characterized by thermogravimetric method (TG) and UV–vis spectroscopy. The detection limit (three times signal-to-noise) with 4 min accumulation is 1.07 × 10−7 mol L−1 Mn(II). The peak currents increases linearly with Mn(II) concentration over the range of 6.0 × 10−7 to 5.0 × 10−4 mol L−1 (r2 = 0.9959). Statistical treatment of the results gave a relative standard deviation lower than 2.30%. The chemical and instrumental parameters have been optimized and the results showed that 1000-fold excess of the additive ions had not interferences on the determination of Mn(II).  相似文献   

17.
A carbon ionic liquid electrode (CILE) was constructed using graphite powder mixed with N-butylpyridinium hexafluorophosphate (BPPF6) in place of paraffin as the binder, which showed strong electrocatalytic activity to the direct oxidation of catechol. In pH 3.0 phosphate buffer solution (PBS) a pair of redox peaks appeared on the CILE with the anodic and the cathodic peak potential located at 387 and 330 mV (vs. SCE), respectively. The electrochemical behaviors of catechol on the CILE were carefully investigated, and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant ks as 1.27 s−1, the charge-transfer coefficient α as 0.58 and the electron transferred number n as 2. Under the selected conditions, the anodic peak current increased linearly with the catechol concentration over the range from 1.0 × 10−6 to 8.0 × 10−4 mol L−1 by cyclic voltammetry at the scan rate of 100 mV s−1. The detection limit was calculated as 6.0 × 10−7 mol L−1 (3σ). The CILE showed good ability to separate the electrochemical responses of catechol and ascorbic acid (AA) with the anodic peak potential separation as 252 mV (vs. SCE). The proposed method was further applied to the synthetic samples determination with satisfactory results.  相似文献   

18.
在优化的实验条件下,利用电化学方法制备了甘氨酸修饰电极,对修饰膜的电活性进行了表征.用循环伏安法研究了鸟嘌呤(G)和8一羟基脱氧鸟嘌呤核苷(8-OH-dG)在聚甘氨酸修饰电极上的电化学行为,并建立了对两者进行分别检测和同时检测的分析方法.实验结果表明,聚甘氨酸修饰电极可以增强鸟嘌呤和8-羟基脱氧鸟嘌呤核苷在电极表面的吸附,并且可以加快鸟嘌呤和8-羟基脱氧鸟嘌呤核苷在电极表面的电子传输,使两种电活性物质在聚甘氨酸修饰电极上的电化学信号明显增大,检测灵敏度大大提高,并且该修饰电极具有良好的稳定性和重现性.可用于鸟嘌呤和8-羟基脱氧鸟嘌呤核昔的分别和同时检测.  相似文献   

19.
A new dopamine-derivative, i.e. N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide (N-DHPB), was synthesized and its application was investigated for the simultaneous determination of N-acetylcysteine (NAC) and acetaminophen (AC) using modified multiwall carbon nanotubes paste electrode. This modified electrode exhibited a potent and persistent electron mediating behavior followed by well separated oxidation peaks of NAC and AC. The peaks current of differential pulse voltammograms of NAC and AC increased linearly with their concentration in the ranges of 0.5-200 μmol L−1 NAC and 15.0-270 μmol L−1 AC. The detection limits for NAC and AC were 0.2 μmol L−1 and 10.0 μmol L−1, respectively. The relative standard deviation for seven successive assays of 1.0 and 30.0 μmol L−1 NAC and AC were 1.7% and 2.2%, respectively. The proposed sensor was successfully applied for the determination of NAC in human urine, tablet, and serum samples.  相似文献   

20.
The piezoelectric quartz crystal microbalance (QCM) was used to monitor the adhesion of mammalian cells on a chitosan (CS)/multiwalled carbon nanotubes (MWCNTs) composite modified gold electrode. The morphology and chemical properties of the CS/MWCNTs film were characterized with scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The human breast cancer cells (MCF-7) were adhered to and grown on the CS/MWCNTs film modified gold surface or a net CS film modified gold surface, and the process of which was continuously monitored and displayed by changes of the resonant frequency (Δf0) and the motional resistance (ΔR1) of the QCM. The attachment/spreading process of the MCF-7 cells on the QCM Au electrode decreased the Δf0 and increased the ΔR1 simultaneously, implying rather complicated effects (simultaneous mass, viscoelasticity and probable surface-stress load) on the sensor surface. The attachment rate and viability of the cells when proliferating on the two surfaces were detected by the MTT assay. The presence and state of cells on the electrode surface were confirmed by the fluorescent microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy of the ferricyanide/ferrocyanide couple were examined before and after the cell adhesion. All data showed that the cell adhesion and proliferation processes were more efficient on the biocompatiable nanocomposite surfaces. The cell-based biosensor has potential for identification and screening of biologically active drugs and other biomolecules affecting cellular shape and attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号