首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A straightforward strategy is described to synthesize poly(?‐caprolactone)‐graft‐poly(N‐isopropylacrylamide) (PCL‐g‐PNIPAAm) amphiphilic graft copolymers consisting of potentially biodegradable polyester backbones and thermoresponsive grafting chains. PCL with pendent chlorides was prepared by ring‐opening polymerization, followed by conversion of the pendent chlorides to azides. Alkyne‐terminated PNIPAAm was synthesized by atom transfer radial polymerization. Then, the alkyne end‐functionalized PNIPAAm was grafted onto the PCL backbone by a copper‐catalyzed azide–alkyne cycloaddition. PCL‐g‐PNIPAAm graft copolymers self‐assembled into spherical micelles comprised of PCL cores and PNIPAAm coronas. The critical micelle concentrations of the graft copolymers were in the range 7.8–18.2 mg L?1, depending on copolymer composition. Mean hydrodynamic diameters of micelles were in the range 65–135 nm, which increased as the length of grafting chains grew. PCL‐g‐PNIPAAm micelles were thermosensitive and aggregated upon heating. © 2014 Society of Chemical Industry  相似文献   

2.
Thermoresponsive graft copolymers of ε‐caprolactone and N‐isopropylacrylamide were synthesized by a combination of ring‐opening polymerization and the sequential atom transfer radical polymerization (ATRP). The copolymer composition, chemical structure, and the self‐assembled structure were characterized. The graft length and density of the copolymers were well controlled by varying the feed ratio of monomer to initiator and the fraction of chlorides along PCL backbone, which is acting as the macroinitiator for ATRP. In aqueous solution, PCL‐g‐PNIPAAm can assemble into the spherical micelles which comprise of the biodegradable hydrophobic PCL core and thermoresponsive hydrophilic PNIPAAm corona. The critical micelle concentrations of PCL‐g‐PNIPAAm were determined under the range of 6.4–23.4 mg/L, which increases with the PNIPAAm content increasing. The mean hydrodynamic diameters of PCL‐g‐PNIPAAm micelles depend strongly on the graft length and density of the PNIPAAm segment, allowing to tune the particle size within a wide range. Additionally, the PCL‐g‐PNIPAAm micelles exhibit thermosensitive properties and aggregate when the temperature is above the lower critical solution temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41115.  相似文献   

3.
Poly(propylene) (PP) membrane grafted with poly(N‐isopropylacrylamide) (PNIPAAm), which is known to have a lower critical solution temperature (LCST) at around 32°C, was prepared by the plasma‐induced graft polymerization technique. Graft polymerization of PNIPAAm onto a PP membrane was confirmed by microscopic attenuated total reflection/Fourier transform IR spectroscopy. The grafting yield of PNIPAAm increased with the concentration of N‐isopropylacrylamide monomer and the reaction time of graft polymerization. The average pore size of the PP membrane also affected the grafting yield. From the field emission scanning electron microscopy (FE‐SEM) measurement, we observed a morphological change in the PP‐g‐PNIPAAm membrane under wet conditions at 25°C below LCST. The permeability of water through the PP‐g‐PNIPAAm membrane was controlled by temperature. The PP‐g‐PNIPAAm membrane (PN05 and PN10) exhibited higher water permeability (Lp) than the original PP substrate membrane below LCST. As the temperature increased to above LCST, Lp gradually decreased. In addition, the graft yield of PNIPAAm and the average pore size of the PP substrate influenced water permeability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1168–1177, 2002; DOI 10.1002/app.10410  相似文献   

4.
A highly transparent thermoresponsive surface that could switch its wettability at different temperatures was constructed via tea‐stain‐inspired chemistry. The pristine tannic acid was modified by alkyl bromide with a substitution degree of 1.7 alkyl bromide units per tannic acid molecule. A coating of the alkyl bromine modified tannic acid with a thickness of 22 ± 3 nm was deposited onto the surface of glass via auto‐oxidation. A poly(N‐isopropylacrylamide) (PNIPAAm) brush was grafted from the alkyl bromide initiator via surface initiation atom transfer radical polymerization with a polymer grafting density of 8.6 × 10?3 mg/cm2. Due to the low thickness of the tannic acid and PNIPAAm coating, the transparency of this thermoresponsive surface remained constant at 94.3% even when the temperature was changed from 20 to 40 °C, but the water contact angle of this surface increased rapidly when the temperature was elevated from 25 to 35 °C. Due to the inevitable hydrolysis and deprotonation, this tea‐stain‐inspired chemistry‐based coating was stable in aqueous solution with a pH of 7 or isopropanol for soaking times of up to 24 h. The coating reported here may have various potential applications such as surfaces for cell culture media, food storage, or self‐cleaning materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46694.  相似文献   

5.
A temperature‐responsive polymer, poly(N‐isopropylacrylamide) (PNIPAAm), was grafted onto porous polyethylene membranes by a plasma‐induced graft polymerization technique. A wide range of grafting was achieved through variations in the grafting conditions, including the postpolymerization temperature, time, monomer concentration, and graft‐reaction medium. The active species induced by plasma treatment was proven to be long‐living via a postpolymerization time of 95 h. Different solvent compositions, that is, water, methanol, benzene, and water/methanol, were used as reaction media, and water showed a much higher polymerization rate than the organic solvents. Based on the hydrophilicity of the active species, a mechanism explaining the solvent effect in plasma‐induced graft polymerization was examined. Characterizations by scanning electron microscopy, X‐ray photoelectron spectroscopy (XPS), and micro Fourier transform infrared showed that the grafted polymers were located on both the outer surface and inside pores of the membranes. The XPS analysis also confirmed that the polar amide groups tended to distribute more outward when grafted PNIPAAm was in its expanding state than when it was in its shrinking state. Water permeation experiments showed that the permeability of the grafted membranes varied dramatically with a slight temperature change in the vicinity of the lower critical solution temperature (LCST) of PNIPAAm. The effective pore radii of the grafted membranes above and below the LCST could be depicted by Hagen‐Poiseuille's law. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3180–3187, 2003  相似文献   

6.
A versatile method is described to synthesize a new family of solvent‐responsive membranes whose response states can be not only tunable but also fixable via ultraviolet (UV) irradiation induced crosslinking. The atom transfer radical polymerization (ATRP) initiator 2‐bromoisobutyryl bromide was first immobilized on the poly(ethylene terephthalate) (PET) track‐etched membrane followed by room‐temperature ATRP grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate‐co‐2‐(dimethylamino)ethyl methacrylate) (P(HEMA‐co‐DMAEMA)) respectively. The hydroxyl groups of PHEMA were further reacted with cinnamoyl chloride (a photosensitive monomer) to obtain photo‐crosslinkable PET‐g‐PHEMA/CA membrane and PET‐g‐P(HEMA/CA‐co‐DMAEMA) membrane. The length of grafted polymer chains was controllable by varying the polymerization time. X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy in attenuated total reflection and thermogravimetric analysis were employed to characterize the resulting membranes. The various membrane surface morphologies resulting from different states of the grafted chains in water and dimethylformamide were characterized by scanning electron microscopy. It was demonstrated that the grafted P(HEMA/CA‐co‐DMAEMA) chains had more pronounced solvent responsivity than the grafted PHEMA/CA chains. The surface morphologies of the grafted membranes could be adjusted using different solvents and fixed by UV irradiation crosslinking. © 2014 Society of Chemical Industry  相似文献   

7.
Controlled thermoresponsive PET track‐etched membranes were synthesized by grafting N‐isopropylacrylamide (NIPAAm) onto the membrane surface via atom transfer radical polymerization (ATRP). The initial measurements were made to determine the anchoring of ATRP initiator on PET membrane surface. Thereafter, polymerization was carried out to control the mass of polymer by controlling reaction time grafted from the membrane surface and, ATR‐FTIR, grafting degree measurements, water contact angle measurements, TGA, and SEM were used to characterize changes in the chemical functionality, surface and pore morphology of membranes as a result of modification. Water flux measurements were used to evaluate the thermoresponsive capacity of grafted membranes. The results show the grafted PET track‐etched membranes exhibit rapid and reversible response of permeability to environmental temperature, and its permeability could be controlled by controlling polymerization time using ATRP method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

8.
Thermo‐ and pH‐sensitive polymers were prepared by graft polymerization or blending of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm). The graft copolymer and blend were characterized by Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction measurements, and solubility test. The maximum grafting (%) of chitosan‐g‐(N‐isopropylacrylamide) (NIPAAm) was obtained at the 0.5 M NIPAAm monomer concentration, 2 × 10−3 M of ceric ammonium nitrate initiator and 2 h of reaction time at 25°C. The percentage of grafting (%) and the efficiency of grafting (%) gradually increased with the concentration of NIPAAm up to 0.5 M, and then decreased at above 0.5 M NIPAAm concentration due to the increase in the homopolymerization of NIPAAm. Both crosslinked chitosan‐g‐NIPAAm and chitosan/PNIPAAm blend reached an equilibrium state within 30 min. The equilibrium water content of all IPN samples dropped sharply at pH > 6 and temperature > 30°C. In the buffer solutions of various pH and temperature, the chitosan/PNIPAAm blend IPN has a somewhat higher swelling than that of the chitosan‐g‐NIPAAm IPN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1381–1391, 2000  相似文献   

9.
pH‐responsive polyethylene terephthalate (PET) track‐etched membranes were synthesized by grafting 2‐hydroxyethyl‐methacrylate (HEMA) on the surface of the membrane via atom transfer radical polymerization. The controllability of grafting polymerization of HEMA on membrane surface is systematically investigated. The pH‐responsive characteristics of PET‐g‐poly(2‐hydroxyethyl‐methacrylate) (PHEMA) gating membranes with different grafted PHEMA chain lengths are measured by tracking the permeation of water solution with different pH values. The results show that the grafting polymerization is controllable, and the permeation of grafted membranes is affected by the grafted PHEMA chain lengths on the surface of membrane. The results also demonstrate that the grafted PET membranes exhibit reversible pH‐response permeation to environmental pH values. Desired pH‐responsive membranes are obtained by controlling the grafted PHEMA chain lengths via atom transfer radical polymerization method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40912.  相似文献   

10.
Poly(methacrylic acid) (PMAA) grafted porous PE membranes (PE‐g‐PMAA) were studied. It was found that (1) a wide range of graft yields can be achieved by varying irradiation time (20–240 min) and monomer concentration (0.22M–0.66M), (2) the grafted membrane exhibits reversible permeability response, (3) the membrane shows a maximum permeability response at an intermediate permeant molecular weight due to size exclusion effect, and (4) depending on the graft yield, two types of permeability response can be obtained. These observations are consistent with our earlier study on poly(N‐isopropylacrylamide) (PNIPAAm)–grafted porous polyethylene membranes. In addition, it was observed that the solvent used during grafting may influence the graft location—presumably due to variations in pore wetting. Specifically, compared to water solvent, methanol can increase grafting inside membrane pores, an observation inferred from membrane swelling, thickness measurement, and SEM characterization. Moreover, preferential grafting inside the membrane pores, as affected by increasing methanol content in the grafting solvent, results in lower membrane permeability and a greater pore graft‐controlled type of permeability response. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 778–786, 2000  相似文献   

11.
The functionalization of poly(ester‐urethane) (PUR) surface was conducted using radiation‐induced grafting. A thermosensitive layer constructed from N‐isopropylacrylamide (NIPAAm) was introduced onto a polyurethane film and characterized using attenuated total reflection Fourier transform infrared and X‐ray photoelectron spectroscopies and contact angle measurements. Size exclusion chromatography was used to analyse the PUR‐graft‐PNIPAAm copolymers and homopolymers formed in solution. Additionally, reversible addition–fragmentation chain transfer (RAFT) polymerization was performed in order to obtain PNIPAAm‐grafted surfaces with well‐defined properties. Atomic force microscopy was used to evaluate the surfaces synthesized via conventional and RAFT‐mediated grafting methods. The results of various techniques confirmed the successful grafting of NIPAAm from PUR film. © 2015 Society of Chemical Industry  相似文献   

12.
Graft polymerization of vinyltriethoxysilane (VTES) onto styrene‐butadiene rubber (SBR) was carried out in latex using benzoic peroxide (BPO) as an initiator. The concentration of VTES effecting on vulcanization characteristics, mechanical properties and thermal properties of VTES‐grafted SBR (SBR‐g‐VTES) were investigated. The grafting of VTES onto SBR and its pre‐crosslinking were confirmed by attenuated total teflectance‐Fourier transform infrared reflectance and proton nuclear magnetic resonance. The mechanism of graft polymerization was studied. The results revealed that the minimum torque, optimum cure time, tensile strength, thermal decomposition temperature, and glass transition temperature (Tg) all increased with the increasing concentration of VTES. But the grafting efficiency of VTES, rate of vulcanization, and elongation at break of the SBR‐g‐VTES decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

14.
A temperature‐sensitive hydrogel with the capability of inclusion complex formation with guest molecules was successfully grafted onto the surface of nonwoven polypropylene (nonwoven PP). This was carried out by the use of N‐isopropylacrylamide monomer and a modified cyclodextrin (acrylamidomethyl‐β‐cyclodextrin (β‐CD‐NMA)). Fourier‐transform infra red (FT‐IR) and elemental analyses confirmed the presence of poly(N‐isopropylacrylamide) (PNIPAAm) and β‐CD‐NMA components on the surface of the textile. Equilibrium swelling ratio measurements showed that the grafted hydrogel maintained its temperature‐sensitive property compared to a nongrafted hydrogel. The effect of β‐CD‐NMA and crosslink agent concentrations on the grafting yield was studied. The β‐CD‐NMA content into the PNIPPAM‐ β‐CD‐NMA grafted nonwoven PP (PNIPAAm‐β‐CD‐NMA‐PP) was estimated by FT‐IR through a new procedure. The estimated amounts of β‐CD‐NMA in PNIPAAm‐β‐CD‐NMA‐PP were determined to be 0.9, 1.9 mg g?1 for 0.019M and 0.049M concentrations of β‐CD‐NMA in monomer solution, respectively. The PNIPAAm‐β‐CD‐NMA‐PP showed a remarkable increase in absorbance affinity of 8‐anilino‐1‐naphthalenesulfonic acid ammonium salt at 20°C from 0.93 to 3.33 µmol g?1 compared to PNIPAAm‐PP. Furthermore, the results showed a temperature‐sensitive loading affinity for PNIPAAm‐β‐CD‐NMA‐PP in absorbance of guest molecules due to the presence of β‐CD‐NMA. The use of hydrophobic guest molecules such as fragrance oils and antibiotics in modified fabrics can provide new applications in textile and pharmaceutical industry. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40497.  相似文献   

15.
The objective of this research was the surface grafting polymerization of biocompatible monomer N‐vinyl‐2‐pyrrolidone (NVP) onto a plasma‐treated nonwoven poly(ethylene terephthalate) (PET) substrate with ultraviolet (UV)‐induced methods. The effects of various parameters, such as the monomer concentration, reaction time, initiator (ammonium peroxodisulfate) concentration, and crosslinking agent (N,N′‐methylene bisacrylamide) concentration, on the grafting percentage were studied. The grafting efficiency of the modified nonwoven PET surfaces reached a maximum at 50 min of UV irradiation and with a 30 wt % aqueous NVP solution. After the plasma activation and/or grafting, the hydrophobic surface of the nonwoven was modified into a hydrophilic surface. NVP was successfully grafted onto nonwoven PET surfaces. The surface wettability showed that the water absorption of NVP‐grafted nonwoven PET (NVP‐g‐nonwoven PET) increased with increasing grafting time. NVP‐g‐nonwoven PET was verified by Fourier transform infrared spectra and scanning electron microscopy measurements. An antibacterial assessment using an anti‐Staphylococcus aureus test indicated that S. aureus was restrained from growing in NVP‐g‐nonwoven PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 803–809, 2006  相似文献   

16.
A flocculant based on cashew gum (CG) grafted with polyacrylamide (PAM) was synthesized using potassium persulfate as the chemical initiator and ultrasound energy. The intrinsic viscosity, hydrodynamic radius, and grafting efficiency of the grafted copolymers (CG‐g‐PAM) were investigated at different monomer and initiator concentrations. The CG‐g‐PAM copolymers were evaluated in kaolin suspension and river water by using jar test procedure comparatively to a commercial flocculant (Flonex‐9045). Ultrasonication resulted in reduced reaction time and high grafting efficiency. The reaction gel point was reached within 10 min and the grafting efficiency was dependent on the acrylamide concentration. The grafted copolymer CG‐g‐PAM‐15285 obtained with 0.285 mmol of initiator showed higher hydrodynamic radius, with flocculation efficacy of 96% comparable with the flocculant Flonex‐9045. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43634.  相似文献   

17.
Graft copolymers of sodium carboxymethylcellulose with N‐vinyl‐2‐pyrrolidone were prepared in aqueous solutions with azobisisobutyronitrile as the initiator. The graft copolymers [sodium carboxymethylcellulose‐g‐poly(N‐vinyl‐2‐pyrrolidone)] were characterized with Fourier transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The grafting parameters, including the graft yield of the graft copolymer and the grafting efficiency of the reaction, were evaluated comparatively. The effects of reaction variables such as the time, temperature, and monomer and initiator concentrations on these parameters were studied. The graft yield and grafting efficiency increased and then decreased with increasing concentrations of N‐vinyl‐2‐pyrrolidone and azobisisobutyronitrile and increasing polymerization temperatures. The optimum temperature and polymerization time were 70°C and 4.30 h, respectively. Further changes in the properties of grafted sodium carboxymethylcellulose, such as the intrinsic viscosity, were determined. The overall activation energy for the grafting was also calculated to be 10.5 kcal/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 936–943, 2007  相似文献   

18.
Natural rubber (NR) latex was grafted by emulsion polymerization with styrene monomer, using cumene hydroperoxide/tetraethylene pentamene as redox initiator system. The polystyrene‐grafted NR (PS‐g‐NR) was hydrogenated by diimide reduction in the latex form using hydrazine and hydrogen peroxide with boric acid as a promoter. At the optimum condition for graft copolymerization, a grafting efficiency of 81.5% was obtained. In addition, the highest hydrogenation level of 47.2% was achieved using a hydrazine:hydrogen peroxide molar ratio of 1:1.1. Hydrogenation of the PS‐g‐NR (H(PS‐g‐NR)) increased the thermal stability. Transmission electron microscopy analysis of the H(PS‐g‐NR) particles revealed a nonhydrogenated rubber core and hydrogenated outer rubber layer, in accordance with the layer model. The addition of H(PS‐g‐NR) at 10 wt % as modifier in an acrylonitrile–butadiene–styrene (ABS) copolymer increased the tensile and impact strengths and the thermal resistance of the ABS blends, and to a greater extent than that provided by blending with NR or PS‐g‐NR. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
In this research, a smart membrane material of graft copolymer of poly(vinylidene fluoride) with poly(N‐isopropylacrylamide) (PVDF‐g‐PNIPAAm) was synthesized by atom transfer radical polymerization (ATRP) using poly(vinylidene fluoride) (PVDF) as a macroinitiator and direct initiation of the secondary fluorinated site PVDF facilitates grafting the N‐isopropylacrylamide comonomer. The copolymers were characterized by Fourier transform infrared (FTIR), 1H NMR, gel‐permeation chromatography (GPC), and X‐ray photoelectron spectroscopy (XPS). The temperature‐sensitive membrane was prepared from the PVDF‐g‐PNIPAAm graft copolymers by the phase inversion method. The effects of temperature on the flux of pure water of membrane was investigated. The results showed that alkyl fluorides were successfully applied as ATRP initiators in the synthetic condition and the flux of pure water through the PVDF‐g‐PNIPAAm membrane depended on the temperature change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1482–1486, 2007  相似文献   

20.
Cationic polyacrylamide‐grafted starch (St‐g‐CPAM) flocculant was prepared by using corn starch and acrylamide (AM) as monomers, dimethyl diallyl ammonium chloride (DMDAAC) as cationic monomer through solution polymerization. The effects of initiator, reaction temperature, and monomer concentration on flocculation, the efficiency of grafting, and the yield of grafting were investigated. The results show that the optimal conditions of the polymerization are as follows: the concentration of ceric ammonium nitrate is 0.5%, the reaction temperature is 60°C, the concentration of total monomer is 20%, and the monomer ratio between AM and DMDAAC is 7 : 3. The flocculation capability was characterized by turbidity reduction. The thermal behavior, chemical structure, and microstructure of St‐g‐CPAM were also investigated by thermal gravimetric, IR, and SEM analyses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号