首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, polyamide‐12 (PA12)/brominated isobutylene‐isoprene (BIIR) TPVs with good mechanical properties and low gas permeability were prepared by dynamic vulcanization in a twin‐screw extruder. The effects of three kinds of compatibilizers on the microstructure and properties of BIIR/PA12 TPV were studied. The compatibility between BIIR and PA12 was improved when maleated hydrocarbon polymeric compatibilizer is added. The reaction between maleic anhydride and amine in polyamide leads to the in situ formation of hydrocarbon polymer grafted polyamide which subsequently can be used to lower the interfacial tension between BIIR and polyamide. The compatibilizing effect of maleic anhydride modified polypropylene (PP‐g‐MAH) on BIIR/PA12 blends is the best among these compatibilizers because the surface energy of PP‐g‐MAH is very close to that of BIIR. The dispersed rubber phase of the blend compatibilized by PP‐g‐MAH shows the smallest size and more uniform size distribution, and the resulting TPVs show the best mechanical properties. The effects of fillers on the properties of BIIR/PA12 TPV were also investigated. The size of the BIIR phase increases with the increase in the content of CaCO3. The modulus and tensile strength of TPVs increased with the increase in the content of CaCO3 because of the reinforcing effect of CaCO3 on TPVs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43043.  相似文献   

2.
The high rate shear flow behavior and the morphology of five different oil‐extended polypropylene (PP)/ethylene‐propylene‐diene monomer (EPDM) thermoplastic vulcanizate blends were investigated with the melt flow rate (MFR) of the PP varying from 0.7 to 20. The ratio of rubber to PP is 70 : 30 in three of the thermoplastic vulcanizates (TPVs) and 50 : 50 in the other two TPVs. The distribution of the high‐temperature oil between the PP melt and the rubber is a key parameter because this will affect the viscosity of the PP/oil medium. The object of this study was to estimate the matrix composition in each of the TPVs at processing temperatures and to compare the shear viscosity of the effective matrix with that of the TPV. To this end, several PP/oil mixtures were prepared and their viscosity curves were correlated with the neat PP melt viscosity curves by means of shift factors varying with oil concentration. The oil distribution between the PP and rubber phases was estimated from TEM micrographs of the TPV blends. The results show that the PPs are mixed with oil to different proportions in the different TPVs and the viscosity curves of these mixtures exhibit the same trends in magnitude as the corresponding TPV viscosity curves. Hence, the shear flow of TPVs can be understood more readily in terms of the effective PP/oil medium flow behavior than in terms of the neat PP melt flow. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 113–121, 2004  相似文献   

3.
Thermoplastic vulcanizates (TPVs) based on high impact polystyrene (HIPS)/styrene‐butadiene rubber (SBR) blends were prepared by dynamic vulcanization technique. The rheological, mechanical and morphological properties of the dynamically vulcanized blends were investigated systematically. As determined by capillary rheometer, the apparent viscosity of the blends decreases as the shear rate increases, indicating obvious pseudoplastic behavior. At low shear rate, the apparent viscosity of these blends is considerably higher than that of neat HIPS and decreases with the increase of HIPS concentration. The increase of HIPS content in the dynamically vulcanized blends contributes to the increase of tensile strength and hardness properties, while elongation at break and tensile set at break reach a maximum at 30 and 50 wt % of the HIPS content, respectively. The etched surfaces of the HIPS/SBR TPVs were investigated using field‐emission scanning electron microscopy, the morphological study reveals continuous HIPS phase and finely dispersed SBR elastomeric phase in the TPVs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Thermoplastic vulcanizates (TPVs) are a special class of thermoplastic elastomers that are generally produced by the simultaneous mixing and crosslinking of a rubber with a thermoplastic polymer at an elevated temperature. Novel peroxide‐cured TPVs based on blends of silicone rubber and the thermoplastic Engage (an ethylene–octene copolymer) have been developed. These TPVs exhibit very good overall mechanical and electrical properties. With an increasing concentration of dicumyl peroxide, the tensile strength, modulus, and hardness of the TPVs increase, whereas the elongation at break decreases. Significant correlations have been obtained from oscillating disc rheometer torque values with various physical properties, such as the modulus and tension set of the TPVs. The aging characteristics and recyclability of the silicone‐based TPVs are also excellent. Scanning electron microscopy photomicrographs of the TPVs have confirmed a dispersed phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In polymeric materials combining desirable properties, compatibility between constituent components of incompatible blends is necessary. The influence of two types of blend compatibilizers, a graft copolymer of maleic anhydride and polypropylene (PP) and phenolic‐modified PP, on the rheological, mechanical, and morphological properties of epoxidized natural rubber/PP thermoplastic vulcanizates was investigated at varied concentrations. All properties improved in a range of loading levels of compatibilizers at 0–7.5 wt % of PP. This was attributed to a chemical interaction between the different phases caused by the functionalized compatibilizers. Increasing chemical interaction between interfaces improved the interfacial tension and led to a microscale size of the dispersion. A decreasing trend in the properties was observed at compatibilizer levels higher than 7.5 wt % of PP because of segregation, which led to a third blend component dispersed in the PP matrix. The compatibilizers behaved as lubricants in the polymer melt flow. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The present work demonstrates the structure-rheology relationship of novel polyvinylidene fluoride/hydrogenated nitrile rubber blends with special reference to the effect of mixing time, which has not been amply discussed in the literature. In between 50 and 70 wt% rubber content, a yield in complex viscosity and secondary plateau in storage modulus were discerned due to interconnected droplets-matrix morphology manifesting the thermoplastic elastomeric nature of the blends (TPEs). Such network-like structure altered the rheological properties like relaxation time, capillary viscosity, die swell, elastic responses of the TPE with respect to the trend as expected according to the rule of mixing. Interestingly, in the early stages of mixing, when the dispersed size was bigger, the effect of physical network on the rheological properties was suppressed. During dynamic vulcanization (TPV), both lower and higher frequency responses in oscillatory shear flow, steady shear rheological properties, recoverable strain etc. have changed notably with mixing time. For example, although the complex viscosity of the TPV was higher at a lower frequency as compared to its TPE, it was significantly lower at a higher frequency at the beginning of dynamic curing; however, viscosity increased appreciably with time. Temperature-dependendent rheological properties were also influenced with mixing time of the compositions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48758.  相似文献   

7.
In this investigation, a gamma radiation-induced methacrylic acid (MAA)-grafted ethylene-propylene-diene elastomer (EPDM) was used as a third component (g-EPDM) in silicone rubber (SiR)/ethylene-propylene-diene elastomer (EPDM) blends. These blends were electron beam (EB) crosslinked. The effect of blend composition, the presence of g-EPDM, and EB crosslinking on the mechanical, heat shrinkability, electrical, and morphological properties of SiR/EPDM blends have been studied. To investigate the effect of grafted EPDM (g-EPDM), 10 wt % of g-EPDM was added to immiscible SiR/EPDM blends. Both silicone and EPDM are blended in different proportions (70:30 and 30:70) with and without g-EPDM followed by compression molding. To improve the properties and investigate the crosslinkability of binary and ternary blends further, the SiR/EPDM blends were irradiated by electron beam at different doses (50, 100, and 150 kGy). The gel content was found to increase with EPDM content, the presence of g-EPDM, and radiation dose. The addition of g-EPDM led to improvement of tensile properties (tensile strength, Young's modulus, percentage elongation, and toughness), electrical properties, and shrinkability of blends. EB crosslinking further enhanced the above properties. Surface morphology (SEM) revealed that the presence of g-EPDM and the incorporation of EB crosslinking improved the above properties of blends. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47787.  相似文献   

8.
The melt rheological properties of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were investigated with special reference to the effect of blend ratio, temperature, shear rate, compatibilization, and dynamic vulcanization. The melt viscosity of the blends determined with a capillary rheometer is found to decrease with an increase of shear rate, which is an indication of pseudoplastic behavior. The viscosity of the blend was found to be a nonadditive function of the viscosities of the component polymers. A negative deviation was observed because of the interlayer slip between the polar EVA and the nonpolar LLDPE phases. The melt viscosity of these blends decreases with the increased concentration of EVA. The morphology of the extrudate of the blends at different shear rates and blend ratios was studied and the size and distribution of the domains were examined by scanning electron microscopy. The morphology was found to depend on shear rate and blend ratio. Compatibilization of the blends with phenolic‐ and maleic‐modified LLDPE increased the melt viscosity at lower wt % of compatibilizer and then leveled off. Dynamic vulcanization is found to increase the melt viscosity at a lower concentration of DCP. The effect of temperature on melt viscosity of the blends was also studied. Finally, attempts were made to correlate the experimental data on melt viscosity and cocontinuity region with different theoretical models. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3210–3225, 2002  相似文献   

9.
Nylon 11 (PA11)/clay nanocomposites have been prepared by melt‐blending, followed by melt‐extrusion through a capillary. Transmission electron microscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler loading. Melt rheological properties of PA11 nanocomposites have been studied in both linear and nonlinear viscoelastic response regions. In the linear regime, the nanocomposites exhibit much higher storage modulus (G′) and loss modulus (G″) values than neat PA11. The values of G′ and G″ increase steadily with clay loading at low concentrations, while the G′ and G″ for the sample with 5 wt % clay show an inverse dependence and lie between the modulus values of the samples with 1 and 2 wt % of clay. This is attributed to the alignment/orientation of nanoclay platelets in the intercalated nanocomposite induced by capillary extrusion. In the nonlinear regime, the nanocomposites show increased shear viscosities when compared with the neat resin. The dependence of the shear viscosity on clay loading has analogous trend to that of G′ and G″. Finally, a comparison has been made between the complex and steady viscosities to verify the applicability of the empirical Cox‐Merz rule. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 542–549, 2006  相似文献   

10.
A series of thermoplastic vulcanisates (TPVs) in the molten state were submitted to large amplitude oscillating strain tests at different frequencies, to investigate their nonlinear viscoelastic properties. A purposely modified torsional harmonic tester with a closed cavity was used to run such experiments, whose results were treated with a Fourier transform (FT) algorithm to extract main torque and strain components, and harmonics if any. Quarter cycle integrations of (averaged) torque signal were also performed, to supplement FT analysis, namely to distinguish extrinsic and intrinsic nonlinear viscoelasticity. The nonlinear viscoelastic character of TPVs was found substantially differing from the one of a molten polypropylene (PP) used for comparison. Within the strain window investigated, no linear behavior is observed with TPVs, in contrast with the pure PP. However, extrapolated “linear” complex modulus G*0 tends to decrease with increasing hardness of TPVs, but subtle differences between the various grades are clearly detected, when using simple models to fit experimental data. While the (room temperature) hardness is somewhat related with the viscoelastic behavior in the molten state, the strain sensitivity of TPVs appears essentially affected by the extractible content (mainly oil). TPVs nonlinear viscoelastic character appears to depend on the strain amplitude: mainly intrinsic, i.e., due to their morphology, at low strain, and essentially extrinsic, i.e., due to the large strain amplitude, at high strain, and in this respect, qualitatively similar to pure PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4193–4205, 2006  相似文献   

11.
Ozone cracking and flex cracking of crosslinked elastomer blends of brominated isobutylene/para‐methylstyrene copolymer (BIMSM) and unsaturated elastomers, such as polybutadiene rubber (BR) and natural rubber (NR), are studied. This saturated BIMSM elastomer, which is a terpolymer of isobutylene, para‐bromomethylstyrene, and para‐methylstyrene, functions as the ozone‐inert phase of the blend. Ozone cracking is measured by the failure time of a tapered specimen under a fixed load in a high severity ozone oven, whereas flex cracking is ranked by the De Mattia cut growth. The ozone resistance of BIMSM/BR/NR blends is compared to that of a BR/NR blend (with or without antiozonant) at constant strain energy densities. The effects of the BIMSM content in the blend, the structural variations of BIMSM, and the network chain length between crosslinks on these two failure properties, which are important in crosslinked compounds for applications in tire sidewalls, are discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2183–2196, 2007  相似文献   

12.
A series of high‐temperature thermoplastic elastomers (TPEs) and thermoplastic vulcanisates (TPVs) were successfully developed based on two different types of heat resistant polyamide (PA) (25 parts by weight)—PA‐12 and PA‐6, in combination with three different functionalized rubbers (75 parts by weight) of varying polarity, e.g., maleic anhydride grafted ethylene propylene diene terpolymer (MA‐g‐EPDM), sulphonated ethylene propylene diene terpolymer, and carboxylated acrylonitrile butadiene rubber, by melt mixing method. These rubbers have low level of unsaturation in its backbone, and the plastics showed high melting range. Thus, the developed TPEs and TPVs were expected to be high temperature resistant. Resol type resin was used for dynamic vulcanization to further increase the high temperature properties of these blends. Interestingly, initial degradation temperature of the prepared blends was much higher (421 °C for MA‐g‐EPDM/PA‐12) than the other reported conventional TPEs and TPVs. Fourier transform infrared analysis described the interactive nature of the TPEs and TPVs, which is responsible for their superior properties. The maximum tensile strength with lowest tension set was observed for the carboxylated acrylonitrile butadiene rubber/PA‐12 TPV. Mild increase in mechanical properties without any degradation was observed after recycling. Dynamic mechanical analysis results showed two distinct glass transition temperatures and indicated the biphasic morphology of the blends, as evident from the scanning electron microscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45353.  相似文献   

13.
Fluoroelastomer/clay composites were prepared by melt mixing in an internal mixer using Cloisite® Nanoclays: NA, 15A, 20A, 30B, and 93A at three different concentrations viz. 2.5, 5.0, and 10.0 phr. Rheology, X‐ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the composites prepared. Dynamic rheological measurements showed significant increase in storage moduli (G′) in the terminal frequency region for the uncured composites prepared from Cloisite® 15A and 20A. At higher frequencies, organically modified nanoclays plasticize the polymer matrix leading to lower modulus values. Using all three characterization techniques, Cloisite® 15A and 20A were shown to have intercalated structure in the fluoroelastomer matrix, whereas other nanoclays were shown to have inferior dispersion. The storage modulus increases proportionally with increase in the clay loading and no clay aggregation was observed at higher loadings. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Conventional polymer blending has a shortcoming in conductivity characteristic. This research addresses the preparation of conductive thermoplastic natural rubber (TPNR) blends with graphene nanoplates (GNPs)/polyaniline (PANI) through melt blending using an internal mixer. The effect of PANI content (10, 20, 30, and 40 wt %) on the mechanical and thermal properties, thermal and electrical conductivities, and morphology observation of the TPNR/GNPs/PANI nanocomposites was investigated. The results showed that the tensile and impact properties as well as thermal conductivity of nanocomposite had improved with the incorporation of 3 wt % of GNPs and 20 wt % of PANI as compared to neat TPNR and reduced with further increase of the PANI content. It was observed that the GNPs and PANI acted as a critical component to improve the thermal stability and electrical conductivity of the TPNR/GNPs/PANI nanocomposites. The most improved conductivity of 5.22 E-5 S/cm was observed at 3 wt % GNPs and 40 wt % PANI. Variable-pressure scanning electron microscopy micrograph revealed the good interaction and distribution of GNPs and PANI within TPNR matrix at PANI loadings lower than 30 wt %. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48873.  相似文献   

15.
To explore the dependence of the microstructure and properties of thermoplastic vulcanizates (TPVs) on the molding process. The polypropylene/bromo-isobutylene-isoprene rubber thermoplastic vulcanizates (PP/BIIR-TPVs) are molded by high rate shear injection and compression molding, and the phase morphology and physical-mechanical properties of PP/BIIR-TPVs specimens are investigated. Detailed small-angle X-ray scattering, scanning electron microscopy and atomic force microscopy investigations demonstrate that the high rate shear of injection molding not only decreases the size of BIIR particles but also induces the orientation of the PP matrix and further increases its crystallinity. Subsequently, the PP/BIIR-TPVs molded by injection molding have higher tensile strength and Young's modulus, while the compression molding benefits to higher elongation at break. The mechanism regarding the effects of high rate shear during injection molding on phase morphology development of PP/BIIR-TPVs is discussed. This study guides the preparation of TPVs products with desired properties.  相似文献   

16.
Blends of polyamide 6 and nitrile rubber (PA6/NBR) dynamically vulcanized may generate innovative products for special purposes where both high temperature and chemical resistance are key factors. In this investigation, we show that the crystalline nature of the PA6 can be controlled in terms of its morphological aspects (degree of crystallinity, crystal size, and structure) as a consequence of the presence of NBR and processing additives. Our results indicate that this crystalline control is dependent on the plasticization caused by the processing additives. Furthermore, imide‐like linkage formation was favored in the presence of ethylene‐co‐vinyl acetate (EVA)‐g‐maleic anhydride, resulting in changes in the molecular mobility of the PA6 matrix, crystallization parameters, and viscoelastic properties when compared to the others EVA additives. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45576.  相似文献   

17.
Electrically conductive PP/EPDM dynamically crosslinked thermoplastic vulcanizate (TPV)/expanded graphite (EG) has been successfully prepared via melt compounding of maleic anhydride grafted polypropylene (PP‐g‐MA)/EG masterbatch and a commercially available TPV material. Correlation between graphite microstructure, and electrical conductivity as well as melt rheological behavior has been studied. Natural graphite flake (NGF), graphite intercalated compound (GIC), and exfoliated graphite (EG) have been employed and compared. Scanning electron microscopy (SEM) showed the presence of 100–200 nm nanolayers in the structure of PP‐g/EG masterbatches, whereas thinner platelets (1.5–2.5 nm) were revealed by transmission electron microscopy (TEM). Better dispersion of the graphite nanolayers in the microstructure of TPV/PP‐g‐MA/EG composite was verified, as the 7.3 Å spacing between the aggregated graphite nanolayers could not be observed in the XRD pattern of this material. TPV/PP‐g/EG nanocomposites exhibited much lower conductivity percolation threshold (φc) with increased conductivity to 10?5 S/cm at EG wt % of 10. Higher nonlinear and nonterminal melt rheological characteristics of dynamic elastic modulus (G′) at low frequency region was presented by the TPV/PP‐g/EG nanocomposites, indicating the formation of nanoscopic conducting multiple networks throughout the continuous TPV matrix. Maleated PP was found to be much more effective in separating EG nanolayers which is attributed to the higher interfacial interaction between PP‐g‐MAH and EG, synergized with its multiporous structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Two maize flours (standard and waxy grades) were plasticized in an internal mixer with a constant amount of water and two glycerol contents. The resulting thermoplastic flours (TPFs) were characterized in dynamic oscillatory shear and creep/recovery rheometry. They displayed two different behaviors: the viscoelastic behavior of a high‐molecular‐weight polymer for the first one and a gel‐like behavior for the second one. The TPFs were then mixed with a copolyester [poly(butylene adipate–terephtalate)]. All of the blends contained the same volume fractions and were prepared with the same mixing conditions. The morphology and rheological behavior of each blend were characterized. Different morphologies, ranging from cocontinuous to nodular, were observed. In fixed mixing conditions, the blend morphology was shown to be governed by the rheological behavior of the starchy phase and the plasticizer content. The gel‐like behavior of the second TPF seemed to prevent droplet coalescence; this led to a very fine dispersion. The rheological behavior of each blend appeared to be linked to both the morphology and the rheological behavior of the two phases. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40222.  相似文献   

19.
Detailed statistical trend analysis of thermoplastic elastomers based on poly (phenylene ether) (PPE), polystyrene (PS), ethylene vinyl acetate (EVA) and styrene‐ethylene‐butylene‐styrene (SEBS) was done through Design Expert software by Stat‐Ease. D optimal crossed design was followed to capture the interaction with the parameters. Effect of blend ratio, vinyl acetate (VA) content of EVA, molecular weight (MW) of SEBS and intrinsic viscosity (IV) of PPE on the blend performance (response) was studied in detail. Design of Experiment (DOE) analysis showed the “optimized formulation” of the blend. Increase in PPE‐polystyrene (PS) content increased tensile strength and modulus of the blend, followed by a decrease in strain at break. However, EVA had a reverse effect on tensile strength and modulus. Strain at break increased significantly with increasing SEBS content in the blend. Graphical and numerical optimization showed that superior mechanical properties (tensile strength, strain at break and modulus) could be achieved at VA content ~ 50% at a particular loading of EVA. Low MW SEBS was found to be more compatible with the other components of the blend. Mechanical properties of the quaternary blend were marginally affected with change in IV of PPE in the range of 0.33 to 0.46. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
In this article, under shearing vibration and pressure vibration, the rheological behavior of HDPE, ABS, and PS melts and the mechanical properties of molded parts are studied. The experimental results show that, under the vibration condition, the apparent viscosity of the polymer melt decreases with an increasing of the vibration frequency and amplitude applied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1587–1592, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号