首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of continuous efforts to understand the surprising synergetic effect between β‐nucleating agent and pre‐ordered structures of isotactic polypropylene (iPP) in significant enhancement of β‐crystallization (Ordered Structure Effect, OSE), two β‐nucleated iPP with different uniformities of stereo‐defect distribution (WPP‐A and WPP‐B) were prepared, their crystallization behaviors with variation of melt structures were studied in detail. The results revealed that β‐phase can hardly form in WPP‐A (whose stereo‐defect distribution is less uniform) because of its strong tendency of α‐nucleation caused by its less uniform stereo‐defect distribution, while WPP‐B is more favorable for β‐crystallization; As fusion temperature decreases, similar variation trends of crystallization temperature and β‐phase proportion can be observed from WPP‐A and WPP‐B, indicating the occurrence of OSE behavior, which provides unsurpassed β‐nucleation efficiency and induces β‐crystallization even in WPP‐A which is less favorable for β‐crystallization; moreover, the upper and lower limiting temperatures of Region II of WPP‐A and WPP‐B are identical, suggesting the uniformity of stereo‐defect distribution has little influence on temperature window for OSE (denoted as Region II). To explore the physical nature of Region II, self‐nucleation behavior and equilibrium melting temperature of PP‐A and PP‐B were studied. The lower limiting temperatures of exclusive self‐nucleation domain of both PP‐A and PP‐B are identical with the lower limiting temperatures of Region II in OSE (168°C); moreover, the Tm0 of both PP‐A and PP‐B are close to their upper limiting temperatures of Region II in OSE behavior (189°C). The possible explanation was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42632.  相似文献   

2.
The self‐diffusion coefficients of C6–C16 long‐chain α‐olefins and their mixtures in semi‐crystalline polyethylene were measured through the pulsed field gradient nuclear magnetic resonance (PFG‐NMR). The effects of chain length, polyethylene (PE) type, and co‐monomer type in PE on the diffusion coefficients were investigated. Moreover, the influence of halohydrocarbon, cycloalkanes, and arene solvents on the diffusion coefficients of C12 α‐olefin in PE was characterized. The results have demonstrated that the diffusion coefficient of the single‐component α‐olefin in PE decreases exponentially with the increase of the carbon number of α‐olefin, and the crystallinity and crystal morphology of PE play a more important role than the co‐monomer type in determining the diffusion coefficients of α‐olefins. In addition, the apparent diffusion coefficients were used to represent the diffusion behaviors of the α‐olefin mixtures in PE. Owing to the presence of other hydrocarbon solvents, namely trichloromethane, cyclohexane, and benzene, the diffusion coefficients of C12 long‐chain α‐olefin in PE are significantly enhanced, and such promoting effect of the hydrocarbon solvents in polyolefin elastomer (POE) is much stronger than those in high‐density polyethylene (HDPE) and linear low‐density polyethylene (LLDPE). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44143.  相似文献   

3.
P3mt1 and P3mt2 were electrochemically synthesized using two different electrolyte supports H2SO4 and TEABF4, respectively. First, it was deduced from density functional theory (DFT) calculations that the electronic and steric effects govern polymerization mechanism of the radical monomers. Second, DFT combined with experimental spectroscopic analyses (ESR, Infrared, Raman, and 13C NMR) demonstrate that H2SO4 or TEABF4 could generate a homogenous or heterogeneous coupling site, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 57–64, 2006  相似文献   

4.
The tear resistance of the polypropylene homopolymer (HPP)/ethylene 1‐octene copolymer (POE) alternating multilayered sheets, which were prepared through multilayered coextrusion, was evaluated. Polarized optical microscope (POM) photographs revealed that HPP and POE layers aligned alternately vertical to the interfaces and continuously parallel to the extrusion direction. Tear results demonstrated the conventional blends had less tear‐resistant than the multilayered samples. Large plastic deformation of HPP layer occurred in the multilayered structure during the stable crack growth, causing the tear energy to increase with the number of layers increasing. The measurements of PCMW2D IR and WAXD revealed that the large plastic deformation had a direct relationship with the crystal structure and termination of micro‐cracks by interface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43298.  相似文献   

5.
In this work, the synergistic effects of β‐modification and impact polypropylene copolymer (IPC) on brittle–ductile (B–D) transition behavior of polypropylene random copolymer (PPR) have been investigated. It is interesting to find that adding both IPC and β‐nucleating agent into PPR has three effects: (i) leading to a significant enhancement in β‐crystallization capability of PPR, (ii) contributing to the shift of B–D transition to lower temperatures, (iii) increasing the B–D transition rate. The reason for these changes can be interpreted from the following two aspects. On one hand, the transition of crystalline structure from α‐form to β‐form reduces the plastic resistance of PPR matrix, thus causing the initiation of matrix shear yielding much easier during the impact process. On the other hand, the well dispersed rubbery phase in IPC with high molecular mobility at relatively low temperatures is beneficial to the shear yielding of PPR matrix and, subsequently, the great improvement in impact toughness of the ternary blends. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Large amount of work has been published on the tacticity‐properties relationship of isotactic polypropylene (iPP). However, the stereo‐defect distribution dependence of morphology and mechanical properties of β‐nucleated iPP (β‐iPP) is still not clear. In this study, two different iPP resins (PP‐A and PP‐B) with similar average isotacticity but different uniformities of stereo‐defect distribution were selected, their β‐iPP injection molding specimens were prepared, and the morphology evolution and tensile behaviors were studied by means of differential scanning calorimetry (DSC), 2D wide‐angle X‐ray diffraction (2D‐WAXD) and scanning electron microscope (SEM). DSC results showed that with the same concentration of β‐nucleating agent (0.3 wt % WBG‐II), PP‐B with more uniform stereo‐defect distribution exhibited more amount of β‐phase than that of PP‐A with less uniform stereo‐defect distribution, indicating that PP‐B is more favorable for the formation of β‐phase. SEM results showed that PP‐B formed more amount of β‐crystals with relatively high structural perfection, while in PP‐A a mixed morphology of α‐ and β‐phase with obviously higher amount of structural imperfection emerges. The results of room‐temperature tensile test indicated that the yield peak width of PP‐B was obviously wider, and the elongation at break of PP‐B was higher than that of PP‐A, showing a better ductile of PP‐B. The morphology evolution results of SEM, 2D‐WAXD and DSC suggest that, a combination of lamellar deformation and amorphous deformation occurred in PP‐A, while only amorphous deformation mainly took place in PP‐B, which was thought to be the reason for the different tensile behaviors of the samples. In the production of β‐PP products via injection molding, the uniformity of stereo‐defect distribution was found to be an important factor. PP with more uniform distribution of stereo‐defect favors the formation of large amount of β‐phase with high perfection, which exhibit superior ductile property. The related mechanism was discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40027.  相似文献   

7.
Conventional expandable polystyrene (EPS) was modified by the preparation of copolymers containing 1.0, 2.5, and 5.0% α‐methylstyrene. Increasing the glass‐transition temperature of EPS was the aim of this work. Copolymeric expandable polystyrene (CEPS) samples were characterized with various techniques. 1H‐NMR spectroscopy was used for the determination of the composition, and gel permeation chromatography was used for the determination of the molecular weights and molecular weight distributions. Differential scanning calorimetry showed that the glass‐transition temperatures of the CEPS samples increased with increasing α‐methylstyrene contents. The prevention of the collapse of the EPS cells was observed in scanning electron microscopy images of the inner portions and outer surfaces of the CEPS samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 609–614, 2003  相似文献   

8.
Polymer processing methods generally play a crucial role in determining the development of microstructure in the fabricated product. In this study, isotactic polypropylene (iPP) melt containing 0.05 wt % β‐nucleating agent (β‐NA) was extruded via a melt flow rate indicator. The molten extrudate was stretched into a fiber upon various take‐up velocities (TVs). The microstructures of the fiber were investigated by differential scanning calorimeter, two‐dimensional wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering. Also, its tensile properties (including tensile strength, modulus, elongation at break, and toughness) were measured by tensile test. Interestingly, the tensile strength (135.0 MPa) of a melt‐spun β‐nucleated iPP fiber fabricated at 400 cm/min was enhanced by 115.2%, compared with that (62.7 MPa) prepared at 100 cm/min, with a considerable increment in toughness (from 661 to 853 MJ/m3). The enhancement mechanism for tensile properties was discussed based on the microstructures. This work offers a simple approach to prepare β‐nucleated iPP fibers with excellent strength and toughness. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43454.  相似文献   

9.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Naturally available halloysite nanotubes (HNTs) with hollow nanotubular structures were used as reinforcement in poly(ε‐caprolactone) (PCL). The PCL/HNT nanocomposites were prepared by melt mixing the polymer with as‐received HNTs up to 10 wt % in an internal batch mixer. Transmission electron microscopy analysis indicated that the HNTs were dispersed uniformly on the nanoscale throughout the PCL matrix. Differential scanning calorimeter studies revealed that the PCL crystallinity was decreased in the nanocomposites, and the HNTs dispersed in the PCL matrix led to an increase in the non‐isothermal crystallization temperature of the PCL. Tensile and dynamic mechanical tests showed great enhancement in strength and stiffness at low HNT content, while still maintaining the ductility of the PCL. The glass transition temperature (Tg) of the pristine PCL was substantially increased with increase in filler loading, which indicates good reinforcing effect imparted by the addition of HNT. Melt rheological studies revealed that the nanocomposites exhibited strong shear thinning behavior, and a percolated network of HNT particles was formed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Long‐chain branched polypropylene was prepared using reaction in the molten state in the presence of glycerol and a linear polypropylene functionalized with maleic anhydride (PPg). The concentration of glycerol in the melt was varied in the range from 0.1 to 5 wt % to obtain different levels of branching. FTIR spectroscopy results indicate that the OH groups of glycerol react with the anhydrides on the PPg chains giving place to ester groups. The presence of long‐chain branches in the molecular structure of PPg was confirmed using multiple‐detection size‐exclusion chromatography and rheology. These techniques demonstrate that the level of branching increases with glycerol concentration and that the modification of PPg produces materials with a bimodal distribution of polymer species. Moreover, some of the highly modified materials display gel‐like behavior. The materials also display thermo‐rheological complexity and enhanced activation energy at low frequencies. The crystallization study shows that both the anhydride groups in PPg and the LCBs have opposite nucleating effects. PPg presents the largest activation energy of crystallization and its value decreases with the concentration of glycerol for a given level of crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40357.  相似文献   

12.
Fluorinated polyurethane–acrylate (FPUA) hybrid emulsion was prepared by copolymerization of polyurethane, methyl methacrylate, and 1H,1H,2H,2H‐heptadecafluorooctyl acrylate (FA) via emulsion polymerization in the presence of a perfluoronated reactive surfactant. The polyurethane was synthesized from isophorone diisocyanate, poly(propylene glycol)‐1000, dimethylolpropionic acid, 1,4‐butanediol, and 2‐hydroxyethyl methylacrylate. The influence of the monomer on the surface properties, wetting behaviors, particle size, and viscosity of the emulsion was investigated. The mechanical properties of FPUA latex films were improved, and water absorption and contact angle were improved with the addition of methyl methacrylate and FA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43357.  相似文献   

13.
Three isomeric 5‐norbornene‐2,3‐dicarboxylic acid diethyl ester (NDDE) with endo‐, exo‐, and trans‐configuration have been synthesized and employed as internal electron donors (IED) in 1‐butene polymerization over magnesium chloride supported Ziegler–Natta catalysts. It was found that the configuration of NDDE plays a key role in tuning the catalyst activity, stereospecificity, molecular weight (MW), and polydispersity index (PDI) of resulting poly(1‐butene). The type of catalyst with cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid diethyl ester as IED shows the highest catalyst activity, while catalyst with trans‐NDDE as IED yields the poly(1‐butene) with the highest MW and the most broad PDI. IR results showed that the NDDE with endo‐, exo‐, and trans‐configuration have different coordination way to MgCl2, subsequently affecting the catalysts performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40758.  相似文献   

14.
Poor physical properties resulting from low interfacial interactions between hydrophilic biopolymers and hydrophobic thermoplastic matrices have been one of the biggest obstacles in preparing quality biomass materials. This study concentrates on the effects of nano‐TiO2 on the properties and structure of starch/poly (ε‐caprolactone) (PCL) composites. The molecular and crystal structures of the composites were characterized by using Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), X‐ray diffraction (XRD), and field emission scanning electron microscope. The results indicated that an interpenetrating network structure formed by adding nano‐TiO2 into starch/PCL composites. The DSC and XRD analysis indicated that the crystallinity degree and the crystallization rate of the composites reduced, whereas the crystal form and crystal size were unchanged. The results also showed that the mechanical properties and water resistance of the composites were improved significantly with the addition of nano‐TiO2, whereas their transparency decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4129–4136, 2013  相似文献   

15.
This study describes the stability and rheological behavior of suspensions of poly(N‐isopropylacrylamide) (PNIPAM), poly(N‐isopropylacrylamide)‐chitosan (PNIPAM‐CS), and poly(N‐isopropylacrylamide)‐chitosan‐poly(acrylic acid) (PNIPAM‐CS‐PAA) crosslinked particles sensitive to pH and temperature. These dual‐sensitive materials were simply obtained by one‐pot method, via free‐radical precipitation copolymerization with potassium persulfate, using N,N′‐methylenebisacrylamide as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests, and analytical centrifugation. The PNIPAM‐CS particles showed higher stability in acid and neutral media, whereas PNIPAM‐CS‐PAA particles were more stable in neutral and alkaline media, both below and above the lower critical solution temperature of PNIPAM (stability data). This is due to different interparticle interactions as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH‐sensitive polymers to crosslinked PNIPAM particles not only produced dual‐sensitive materials but also allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The structure and properties of HDPE/UHMWPE blends prepared through a pan‐milling reactor in solid state at ambient temperature were compared with the blends made by melt mixing. The changes of structure and properties of the blends were investigated by FTIR, melt flow index, mechanical properties, dynamic rheological measurement, DSC, and WAXD. DSC measurement illustrated that after pan‐milling treatment, the half‐width of the melting temperature became smaller. The more content of UHMWPE added in the blend, the more evident change was observed. Combined with the dynamic rheological analysis, it was proved that, the pan‐milling treatment can improve the compatibility of the HDPE/UHMWPE blends. X‐ray diffraction analysis showed that after pan‐milling treatment some ordered structure could be induced, but after heat treatment, the induced crystalline structure disappeared. The tensile properties of pan‐milled HDPE/UHMWPE blends also achieved improvement after pan milling treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39916.  相似文献   

17.
Five ethylene‐propylene random copolymers were nucleated with two soluble nucleating agents. Ethylene content changed between 1.7 and 5.3 wt %, while nucleating agent content was adjusted according to the solubility of the additive. It changed from 0 to 5000 ppm for the sorbitol (1,2,3‐tridesoxy‐4,6:5,7‐bis‐O‐[(4‐propylphenyl) methylene]‐nonitol) and from 0 to 500 ppm for the trisamide compound (1,3,5‐benzene‐trisamide) used. Crystalline structure was analyzed in detail by various methods (DSC, XRD, and SEM). Mechanical properties were characterized by tensile and instrumented impact measurements. The results showed that most properties changed moderately upon nucleation, but impact resistance increased considerably. Spherulitic structure was not detected, but instead in the presence of the soluble nucleating agents used a microcrystalline structure formed. The large increase of impact resistance could not be related directly to changes in crystalline morphology. On the other hand, local rearrangement of morphology was detected by XRD and SEM analysis including an increase of lamella thickness, crystal orientation, and the formation of shish‐kebab structures in the core of the injection molded specimens. A small increase in the γ‐phase content of PP was also observed. These changes increased crack propagation energy considerably leading to the large improvement observed in impact resistance. Although the phenomenon could be related to ethylene content, differences in molecular weight also helped to explain the changes observed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43823.  相似文献   

18.
The aim of this study was to compare the effects of different silica grades on the structure and morphology of isotactic polypropylene (iPP)/silica composites to better understand their structure–property relationships. Isotactic polypropylene composites with 2, 4, 6, 8 vol % of added silica fillers differing in particle size (micro‐ vs. nanosilica) and surface modification (untreated vs. treated surface) were prepared by nonisothermal compression molding and characterized by different methods. The addition of all silica fillers grades to the iPP matrix significantly influenced the spherulitic morphology, while phase characteristics of the iPP matrix seemed to be unaffected. Surface modification of silica fillers exhibited stronger effects on spherulite size than size of silica particles. Nonpolar silica particles, more miscible or compatible with iPP chains than polar silica particles, enabled better spherulitic growth. The spherulite sizes tended to reach equal values at 8 vol % of added silicas showing that spherulite size became independent of filler concentration and surface modification above optimum filler concentration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Two solution reactors in series were utilized to synthesize comb‐branched high‐density polyethylene (HDPE), cbHDPE, where the first reactor prepares vinyl‐terminated HDPE macromers catalyzed by an organometallic catalyst favoring beta hydride transfer and the second reactor copolymerizes HDPE macromers with ethylene using a different organometallic catalyst capable of incorporating macromers. A bimodal HDPE, biHDPE with bimodalities in molecular weight, and hexene content of the desired composition distribution was also prepared in a gas phase reactor using silica supported dual organometallic catalysts. By blending 3% solution‐made cbHDPE into the gas‐phase biHDPE, the resulting trimodal HDPE preserves the excellent stiffness and toughness of the bimodal HDPE while having exceptional melt strength and processability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45755.  相似文献   

20.
A novel bis(β‐ketoamino)Ni(II) complex catalyst, Ni{CF3C(O)CHC[N(naphthyl)]CH3}2, was synthesized, and the structure was solved by a single‐crystal X‐ray refraction technique. The copolymerization of norbornene with higher 1‐alkene was carried out in toluene with catalytic systems based on nickel(II) complexes, Ni{RC(O)CHC[N(naphthyl)]CH3}2(R?CH3, CF3) and B(C6F5)3, and high activity was exhibited by both catalytic systems. The effects of the catalyst structure and comonomer feed content on the polymerization activity and the incorporation rates were investigated. The reactivity ratios were determined to be r1‐octene = 0.009 and rnorbornene = 13.461 by the Kelen–Tüdõs method for the Ni{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of 1H‐NMR and 13C‐NMR. The thermogravimetric analysis results showed that the copolymers exhibited good thermal stability (decomposition temperature, Tdec > 400°C), and the glass‐transition temperature of the copolymers were observed between 215 and 275°C. The copolymers were confirmed to be noncrystalline by wide‐angle X‐ray diffraction analysis and showed good solubility in common organic solvents. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号