首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高锰钢是传统的耐磨材料。为进一步提升高锰钢的耐磨性能,使其能满足复杂工况的使用要求,本文采用凝固析出方法制备了不同体积分数TiC增强的高锰钢基复合材料,系统研究了复合材料的显微组织和磨料磨损性能。热处理后,复合材料由奥氏体和TiC两相组成,TiC颗粒均匀分布在高锰钢基体中,颗粒与基体界面清洁。磨料磨损实验表明,TiC颗粒的引入提高了复合材料耐磨性能。然而,复合材料的磨损性能随着TiC体积分数的增加而降低。研究表明这是因为随着TiC体积分数的提高,陶瓷粒径尺寸增大且部分形成团簇,陶瓷颗粒在磨损过程中发生破碎从而提高磨损率。  相似文献   

2.
《铸造》2017,(5)
通过高应力三体磨料磨损试验,对比研究Al_2O_3陶瓷增强高锰钢基复合材料和高锰钢的耐磨性能,采用SEM观察磨损试样的微观磨损形貌,并通过测试磨损试样亚表层显微硬度研究材料磨损硬化程度。研究结果表明,本试验条件下Al_2O_3颗粒增强高锰钢基复合材料中陶瓷颗粒与高锰钢基体没有成分过渡,界面处无明显裂缝,说明试样中虽然没有形成冶金结合,但是机械咬合紧密。高应力三体磨料磨损试验中,在3 kg和5 kg两种不同载荷下,Al_2O_3颗粒增强高锰钢基复合材料耐磨性优于高锰钢的耐磨性,而且随着磨损时间的延长,复合材料的相对耐磨性不断提高。在3 kg载荷120 min磨损条件下复合材料的相对耐磨性是高锰钢的1.39倍,在5 kg载荷120 min磨损条件下复合材料的相对耐磨性是高锰钢的1.27倍,可见较低载荷下Al_2O_3颗粒增强高锰钢基复合材料相对耐磨性较高。亚表层显微硬度测试表明,高锰钢和Al_2O_3颗粒增强高锰钢基复合材料在相同磨损时间下,5 kg载荷下的磨损硬化效果高于3 kg载荷下的磨损硬化效果。同时,纯高锰钢的磨损硬化硬度值最高可达到HV 580,而复合材料在较高载荷下由于陶瓷颗粒的保护,其高锰钢基体磨损硬化效果没有纯高锰钢明显。  相似文献   

3.
研究TiCp/Fe基复合材料在冲击磨料磨损条件下的耐磨性.利用SEM和金相显微镜分析复合材料组织及磨面形貌.结果表明:在冲击磨料磨损条件下,复合材料基体磨损以凹坑和塑性流动为主,TiC颗粒则起到增强基体的作用.随着TiC颗粒数目增多,TiC颗粒对基体的保护作用越强,越能提高复合材料的耐磨性.  相似文献   

4.
利用激光熔覆技术在1Cr18Ni9Ti奥氏体不锈钢表面制得了以TiC为增强相、以FeAl 金属间化合物为基体的耐磨复合材料涂层,研究了激光熔覆。FiC/FeAl复合材料涂层在干滑动磨损条件下的耐磨性能及磨损机制。结果表明:随着载荷和滑动速率的增加,TiC/FeAl金属间化合物基复合材料涂层的磨损速率增加,其磨损机制随着载荷的增加逐渐由磨料磨损向粘着磨损转变;激光熔覆层中TiC体积分数的增加,一方面提高了涂层的磨料磨损抗力,另一方面降低了熔覆层表面与对磨材料之间的粘着倾向,提高了TiC/FeAl涂层的滑动磨损性能。激光熔覆TiC/FeAl金属间化合物基复合材料涂层具有优异的耐磨性能并随TiC体积分数的增加而提高。  相似文献   

5.
宋怀江  张国赏 《铸造技术》2005,26(6):468-469,477
为了提高高锰钢冲击磨料磨损性能,利用离心铸造法制备了WC颗粒增强高锰钢基表面复合材料,并在MLD-10型动载磨料磨损试验机上进行了冲击磨料磨损性能试验.结果表明:制备的复合材料颗粒分布均匀,WC颗粒与高锰钢基体结合良好;WC的加入提高了材料的抗冲击磨料磨损性能.  相似文献   

6.
ZTA/高铬铸铁基复合材料的制备及磨损性能研究   总被引:1,自引:0,他引:1  
将粒径为2~3 mm的ZTA(ZrO2增韧Al2O3)陶瓷颗粒与自制粘结剂经混合烧结后,获得蜂巢状陶瓷预制体,浇注金属液铸渗陶瓷预制体,成功制备出ZTA陶瓷颗粒增强高铬铸铁基耐磨复合材料,并考察了复合材料的三体磨料磨损性能.结果表明,复合材料中陶瓷颗粒的体积分数为47%~55%;陶瓷颗粒与基体界面致密,无缩孔、裂纹等缺陷;复合材料的三体磨料磨损性能是高铬铸铁基体的2.41倍.  相似文献   

7.
H13钢作为盾构机刀圈材料,主要用于破碎坚硬岩石。在盾构机掘进过程中,刀圈的磨损是不可避免的,过度的磨损会导致掘进效率的降低,增加施工风险。为了提高H13钢的耐磨性,采用重力铸造原位自生的方法,制备了体积分数为1%、3%、5%的原位自生NbC/H13钢复合材料。采用金相显微镜、扫描电子显微镜对复合材料的物相组成与组织结构进行分析,使用冲击试验机、三体磨料磨损试验机对不同体积分数NbC/H13钢复合材料的冲击韧性、磨料磨损性能进行研究。结果表明,制备的复合材料组织致密,NbC增强相在基体中弥散分布。随着增强相体积分数提高,增强相的形态由网状逐渐向小棒状和颗粒状转变;复合材料的冲击韧性值随着增强相的体积分数提高逐渐下降,当NbC含量在5%(体积分数)时,冲击韧性到最小值6.5 J;三体磨料磨损结果表明,随着NbC体积分数的增加,有效减少磨料对钢基体的磨损,从而进一步提高了复合材料的耐磨性,与基体材料相比,耐磨性提高了2.1倍。  相似文献   

8.
TiCp/3Cr13复合材料显微组织及耐磨性的研究   总被引:2,自引:0,他引:2  
孙建荣  孙扬善  闵学刚 《铸造》2001,50(1):25-28
研究了TiC颗粒增强3Cr13钢基复合的显微组织和摩擦磨损特性,探讨了TiC颗粒增强3Cr13钢基复合材料的摩擦磨损机理。结果表明,当TiCp颗粒的体分数小于8%时,显微组织中TiCp颗粒分布均匀,没有出现颗粒的团聚及由于引入TiCp颗粒而形成的组织缺陷,随着TiC颗粒体积分数的增加,复合材料的耐磨性增加,达到了一定的体积分数时,其耐磨性几乎不再增加。  相似文献   

9.
TiC硬质合金颗粒复合耐磨材料的研究   总被引:5,自引:1,他引:5  
李力军  杨瑞林 《硬质合金》1995,12(4):193-197
用钨极氩孤堆焊获得含有TiC硬质合金颗粒及金属基体成分不同的两种复合耐磨材料。研究了两种材料的显微组织、相组成并测定了材料的宏观及显微硬度,用三种硬度不同的磨料测定了两种材料的磨料磨损耐磨性并分析了其磨损特点。结果表明,材料的耐磨性明显地受到其中TiC硬质合金颗粒的含量、金属基体的成分组织和硬度以及磨料的硬度的影响。当磨料一定时,随着TiC颗粒含量及金属基体硬度的提高,材料的耐磨性明显地提高,当磨料硬度提高时,材料的耐磨性则明显下降。金属基体的磨损主要是显微切削及显微犁沟,而TiC颗粒则是以显微脆断方式产生磨损。  相似文献   

10.
研究了原位反应VCP/Fe复合材料在冲击磨料条件下的耐磨性与VC增强颗粒体积分数、分布密度的关系.并利用SEM和光镜观察分析了复合材料的组织及磨损形貌。结果表明,随着VC颗粒在复合材料中的体积分数及分布密度的增大.复合材料的耐磨性提高。在冲击磨料条件下,VCP/Fe复合材料磨损主要是受显微犁削与显微切削的作用。  相似文献   

11.
采用在普通碳钢的熔炼过程中加入钛的方法制备了不同成分的原位自生TiCp/Fe复合材料,在观察显微组织,测定性能的基础上进行了磨粒磨损特性研究。结果表明,简单的熔铸法可以制备不同体积分数的TiCp/Fe复合材料,材料中TiC以细小的规则多边形状存在。高硬度TiC的形成使得复合材料抗磨粒磨损特性得到提高。复合材料的抗磨粒磨损性能,总体上随TiC颗粒体积分数的增加而提高,在5~35N载荷范围内,载荷越大、TiC含量越高,越表现出优异的耐磨性能。当制备复合材料时添加过量的Ti使基体中Fe3C消失时,材料宏观硬度降低,但复合材料耐磨性仍然得到提高。复合材料的磨损机制以形成犁削和磨沟为主,形成一次磨屑。  相似文献   

12.
颗粒增强高铬铸铁基复合材料的制备、组织与性能   总被引:1,自引:1,他引:0  
郑开宏  赵散梅  王娟  陈亮  李林 《铸造》2012,61(2):165-168
将粒径为1~3 mm的ZTA(ZrO2增韧Al2O3)陶瓷颗粒与自制粘结剂均匀混合后填充到具有蜂窝状内腔的模具中固化后获得蜂窝状多孔陶瓷预制体,浇注高铬铸铁金属液铸渗陶瓷预制体成功制备出ZTA陶瓷颗粒增强高铬铸铁基耐磨复合材料,并考察了复合材料的三体磨料磨损性能.结果表明:复合材料中陶瓷颗粒的体积分数为48%~58%;陶瓷颗粒与基体界面致密,无缩孔、裂纹等缺陷;经热处理后复合材料的耐三体磨料磨损性能是工程中常用的Cr20高铬铸铁的5.9倍.  相似文献   

13.
采用铸渗法成功制备出ZTA(ZrO2增韧A12O3)陶瓷颗粒增强合金钢基耐磨复合材料.制备方法:将陶瓷颗粒与自制粘结剂混合填充到具有一定型腔的模具中,加压凝固后获得多孔连通的陶瓷预制体;将预制体固定到铸型中,浇注合金钢,浇注温度1 500--1 560℃,金属液铸渗预制体获得局部复合的耐磨复合材料.结果表明:铸渗效果良好,陶瓷颗粒与合金钢基体界面结合紧密,无缩孔、裂纹等缺陷;陶瓷颗粒在复合材料中的体积分数为42%~56%;在三体磨料磨损条件下,ZTA/合金钢复合材料的抗三体磨料磨损性能是合金钢基体的4.37倍.  相似文献   

14.
预制块重熔法制备的SiC/Al复合材料的磨损性能研究   总被引:1,自引:0,他引:1  
本文采用含高体积分数SiC颗粒预制体在高能超声搅拌下加入铝熔体的方法制备SiCP/Al复合材料,研究了复合材料的微观组织特征、硬度和摩擦磨损性能。实验结果表明:高能超声重熔预制块的方法制备的复合材料基体组织形态均匀细小,SiCP颗粒在复合材料中弥散分布,与基体间结合良好;随着SiCP颗粒体积分数的增加,复合材料的硬度上升,耐磨性显著提高。通过对复合材料磨损表面的SEM观察分析表明,在干摩擦条件下,复合材料的磨损机理为微切削磨损和表层剥落及部分粘着磨损的综合作用。  相似文献   

15.
采用气压浸渗法制备高体积分数的镀TiC金刚石/铝复合材料,通过SEM和EDS等手段对复合材料的断口形貌进行分析,并研究TiC镀层对复合材料界面和热膨胀性能的影响。结果表明:TiC镀层改善金刚石颗粒与铝合金基体之间的选择性粘结现象,断裂方式以基体断裂为主。部分TiC会被氧化成TiO2并与铝合金基体反应生成Al2O3,从而实现金刚石颗粒与铝合金基体之间良好的界面结合;TiC镀层有效地降低复合材料的热膨胀系数(CTE),增强复合材料热膨胀性能的稳定性。在体积分数相同的情况下,CTE随金刚石颗粒尺寸的减小而减小。  相似文献   

16.
采用粉末冶金法制备出不同SiC颗粒体积分数(30%、35%和40%)的SiCp/Al复合材料。采用MMU-5GA微机控制真空高温摩擦磨损试验机对比研究SiCp/Al复合材料在不同体积分数以及T6热处理前后情况下平均摩擦因数和磨损率的变化,通过扫描电镜分析了SiCp/Al复合材料表面磨损形貌,探讨了摩擦磨损机理。试验结果表明,SiC颗粒体积分数在30%~40%变化时,随其体积分数增加耐磨性下降。SiC颗粒体积分数在30%~35%范围内,SiC颗粒与基体结合较好,SiC颗粒作为硬质点起到抵抗磨损和限制基体合金塑性变形产生磨损的双重作用;但SiC含量过多时,颗粒与基体的结合不紧密,磨损时颗粒极易脱落,复合材料耐磨性降低;T6热处理后复合材料的平均摩擦因数和磨损率均降低,这是由于热处理后试样强度及硬度提高,从而提高了试样的耐磨性;常温下复合材料在磨损初期的磨损机理主要以磨粒磨损为主,而在磨损期则为磨粒磨损与剥落磨损共存。  相似文献   

17.
以Al-Ti-C为反应体系,采用热爆法在AZ91合金熔体中合成了TiC颗粒并对复合材料的摩擦磨损性能进行研究。结果表明,在750℃温度下,Al-Ti-C体系中Al含量为40%时,原位反应进行得最充分,生成的TiC颗粒细小,在复合材料中分布均匀。复合材料试样的摩擦磨损研究表明,当TiC含量在0%~5%时,复合材料的耐磨性能随着TiC含量的增加显著提高,磨损机理由AZ91基体的粘着磨损逐渐转变为磨粒磨损。  相似文献   

18.
原位TiC颗粒对7075铝合金组织和磨损特性的影响   总被引:1,自引:0,他引:1  
采用原位反应近液相线铸造法制备具有不同原位TiC颗粒含量的TIC/7075铝合金复合材料,在不同干摩擦条件下测试了复合材料磨损特性,研究TiC原位颗粒对材料的组织及磨损性能的影响.结果表明,原位TiC颗粒对7075基体铝合金的铸态组织具有细化和球化作用,随着TiC颗粒含量的增加,复合材料的铸态组织由蔷薇状组织逐渐转变为等轴晶组织.在转速和压力相同的条件下,复合材料的磨损量随TiC颗粒含量的增加而降低,增强相TiC的加入显著提高了材料的磨损性能.  相似文献   

19.
《铸造》2019,(3)
采用金属熔化铸造工艺制备了体积分数为2%、6%、8%的镀镍石墨颗粒增强铬锆铜基复合材料,分析测试了其组织、硬度、耐磨性及磨损特征,并与基体铬锆铜进行了对比研究。结果表明:镀镍石墨颗粒均匀分布在基体中,并与基体紧密结合,无其他明显反应物生成;未经热处理的体积分数为8%的镀镍石墨颗粒增强铬锆铜基复合材料的硬度最低,为HV135.75,仅比基体铬锆铜硬度减少了2.9%;体积分数为8%的镀镍石墨颗粒增强铬锆铜基复合材料的耐磨性高于体积分数为2%和6%的镀镍石墨颗粒增强铬锆铜基复合材料,其耐磨性较基体提高了76%;磨损表面较为平坦,无明显的犁沟及抛削坑,颗粒组织均匀,表现为磨粒磨损。  相似文献   

20.
研究了真空熔铸法制备的锰白铜基铸造碳化铬复合材料的二体磨料磨损机理。结果表明,锰白铜基铸造碳化铬复合材料的耐磨性随载荷和磨料粒度的增加而降低。在相同载荷和磨料粒度的试验条件下,试样的耐磨性随碳化铬颗粒体积分数增大而提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号