首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
本文设计了一种新型的低互耦微带反射阵列天线.反射单元采用随机点阵结构,利用随机点阵结构的高自由度获得不同的反射相位.为了降低单元之间的互耦效应,在随机点阵单元外围添加方形金属环.采用该新型微带反射单元,设计了7×7规模的反射阵列.仿真和测试结果表明,在工作频率5.8GHz处,天线的增益为19.7dBi,阻抗带宽为6.0%(5.71~6.06GHz),主旁瓣比优于13.1dB,交叉极化小于-20dB,印证了随机点阵结构设计反射单元的可行性.  相似文献   

2.
提出了一种新型的全向微带缝隙阵列天线,缝隙单元基于圆形互补开口谐振环(CSRR)结构.天线共有8个背靠背CSRR缝隙单元,分别蚀刻在带状线两侧接地板上,通过中心导带串行馈电.为了获得良好的全向性能,相邻CSRR缝隙单元开口朝向相反,并对天线结构进行扫参分析.设计了一款工作在5.8 GHz的水平全向缝隙阵列天线,仿真结果表明,天线的阻抗带宽(|S_(11)|-10 dB)为4.8%(5.69 GHz~5.97 GHz),最大增益为9.63 dBi,水平方向最大增益变化小于0.5 dB.  相似文献   

3.
本文设计了一款新型微带栅格阵列天线.为了拓展天线带宽,辐射单元采用非均匀尺寸的菱形结构,在介质基板与地板间加入空气层,采用探入式同轴探针对天线进行馈电.单元间微带传输线采用正弦曲线结构,极大地减小了天线的辐射口径.天线面积为290×205 mm^(2),共包含7个菱形辐射单元.通过建模仿真和扫参分析,结果表明,天线的阻抗带宽(|S_(11)|<-10 dB)为13.0%(2.30 GHz~2.62 GHz).在工作频率2.45 GHz处,天线的最大增益达到15.4 dBi,交叉极化小于-25 dB,旁瓣电平低于-15.6 dB.  相似文献   

4.
提出了一种新型的全向平面缝隙阵列天线. 8对环形缝隙背靠背蚀刻于带状线两侧地板,作为辐射单元,并且通过中心导带串行馈电.通过在环形缝隙内部加载一对Y形缝隙枝节,提升单元辐射性能.为进一步拓宽工作带宽,提高增益,采用遗传算法(GA)对天线进行优化设计,根据设计结果加工制作了天线样品.测量结果表明,天线的阻抗带宽(|S11|<-10 dB)为5.69%(5.64 GHz~5.97 GHz),峰值增益为9.68 dBi,水平方向最大增益变化小于0.5 dB,在工作频带内具有稳定的全向辐射性能.  相似文献   

5.
设计了一种新型的基于微带贴片馈电的介质谐振器天线.天线的介质杆设计为锥削结构,采用具有嵌入式微带线的圆形贴片进行馈电.通过调节微带线嵌入圆形贴片的深度和宽度,获得较宽的阻抗带宽.天线样品的测试结果与设计仿真结果吻合良好.天线阻抗带宽(|S11|-10dB)为7.1%(5.73~6.14GHz),频段内的平均增益超过11.1dBi.在工作频率5.8GHz处,天线的增益达到11.2dBi,相应的口径效率为84.1%.  相似文献   

6.
设计了一种应用于WiMAX的紧耦合阵列天线。基于超表面解耦原理,设计了一种具有负介电常数和正磁导率的耶路撒冷十字超表面单元。在二单元紧耦合贴片天线上方加载5×6的超表面以减小单元间互耦,矩形贴片上刻蚀一个U形缝隙改善天线的阻抗匹配。阵列天线的尺寸仅为55 mm×74 mm×8.2 mm(0.64λ0×0.86λ0×0.10λ00为3.5 GHz时自由空间的波长),天线单元的间距(边到边的距离)为1.3 mm(0.015λ0)。测量结果表明,阵列天线能够工作在WiMAX的3.5 GHz频段,-10 dB阻抗带宽为13.83%(3.23 GHz~3.71 GHz),-18 dB解耦带宽为10.34%(3.3 GHz~3.66 GHz),天线具有良好的辐射特性。  相似文献   

7.
本文采用了部分均匀覆盖层,设计了一款新型的高增益Fabry-Perot谐振腔天线.该天线覆盖层采用部分均匀结构,划分为3×3个区域,不同区域内贴片的尺寸不尽相同.每个区域内包含5×5个矩形贴片,单元尺寸一致.由于各区域的贴片尺寸不同,使得部分反射层不同区域内的反射系数和透射系数也不同,从而改善了天线口径面上的幅度和相位的均匀度.仿真结果表明,天线的阻抗带宽(|S_(11)|-10 dB)为3.77%(5.72~5.94 GHz).在工作频率5.8 GHz处,天线的主交叉极化相差30 dB以上,增益达到19.9 dBi.  相似文献   

8.
设计了一款基于近零折射率超材料(NZRIM)的低剖面高水平面增益全向天线。超材料晶胞由两个对称的C形条带和一个弯折线条带组成。将超材料晶胞组成的阵列轴对称放置在全向天线的四周,有效改变电磁波的辐射方向,使之更靠近水平面,从而提高天线的水平面增益。测试结果表明,天线的-10 dB阻抗带宽为5.78 GHz~6.12 GHz。加载超材料后的天线在工作带宽内的水平增益可以提高0.5 dB~1 dB,最大水平增益达到2.68 dBi。  相似文献   

9.
刘扬 《硅谷》2010,(21):33-34
提出一种新型的多边形结构宽带微带天线。此天线拥有体积小、剖面低、重量轻、结构简单等。采用ansoft公司的基于时域有限差分法(FDTD)的HFSS12电磁仿真软件对该天线进行了仿真。从仿真结果上看,该微带天线的中心频率10GHz,S11≤-10dB时的相对带宽147%(3.0GHz~20.0GHz),可以有效的覆盖到S、C、X、Ku各个波段以及3GHz到6GHz各个移动通信频段,也可用于各种无线局域网等场合。该天线的平均增益3dB,最高增益达到5dB。  相似文献   

10.
基于超材料的相位补偿特性实现特定波段超材料滤波器设计。本工作通过变形传统的互补型开口谐振环,设计了一种小型化哑铃型缝隙结构超材料滤波器,通过二极管控制超材料的电磁特性在不同时间的空间分布形式,以实现空间滤波器中心频率可调。滤波器单元尺寸为5.0 mm×5.0 mm×0.8 mm,具有小型化的特点。仿真结果表明:-10 dB工作带宽为28%(9.2~12 GHz),回波损耗最小值为29 dB,插入损耗最大值为0.8 dB。测试结果表明:-10 dB工作带宽为25%(9.2~11.7 GHz),回波损耗最小值为20 dB,插入损耗最大值为1.0 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号