首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
室温条件下,采用INSTRON实验机和分离式Hopkinson压杆(SHPB)实验装置对TC4钛合金进行压缩实验,得到了不同应变率下的真应力-真应变曲线。通过对应力-应变曲线拟合分析,建立了TC4钛合金的Johnson-Cook(JC)本构模型。基于该本构模型,采用ABAQUS对TC4钛合金高应变率下的冲击压缩实验进行了数值模拟,通过实验结果与仿真数据的对比分析,验证了该本构模型参数的正确性。为实现迫击炮轻量化的目标,设计了一种新型轻量化钛合金质迫击炮座钣。通过建立冲击载荷下迫击炮座钣的有限元模型,考虑材料的应变率效应,对座钣的强度和刚度进行了分析,得到了座钣的应力和位移的变化规律。本文的研究结果为迫击炮座钣及其它装备结构的轻量化设计与开发提供了借鉴。  相似文献   

2.
为研究TC4-DT钛合金的动态力学性能及其本构关系,在1000~8000 s-1应变率范围内,利用分离式Hopkinson压杆试验装置对该材料进行动态压缩试验,得到高应变率下的真实应力-应变曲线。结果表明:高应变率时TC4-DT钛合金材料存在应变率增强、增塑以及应变强化效应,其流变应力表现出较强的应变率敏感性。通过微观组织观察,发现高应变率变形时出现绝热剪切带是材料流变应力急剧减小的主要原因。改进Johnson-Cook本构模型中的温度项,利用试验数据对TC4-DT钛合金在高应变率下的动态塑性本构关系进行拟合,得到室温下该材料的动态塑性本构方程,模型计算结果和试验结果证明该模型可以更好地预测TC4-DT钛合金高应变率下的塑性流变应力。  相似文献   

3.
采用电子万能试验机对TC18钛合金进行常温准静态压缩实验,得到该合金在准静态下的实验数据,根据实验数据,选用分离式Hopkinson压杆对TC18钛合金在温度分别298、523、773、1 023 K,应变率分别为500、1 000、1 500 s-1下进行动态力学性能实验,从而获得TC18钛合金在高温动态压缩条件下的应力-应变曲线,并利用J-C模型对合金在高应变率下的动态塑性本构关系进行拟合,最终建立该合金在高温下的动态塑性本构方程。通过对模型的计算结果分析表明,该模型可以较好地预测TC18钛合金在高温与冲击载荷共同作用下的塑性流变应力。  相似文献   

4.
通过TC4-DT钛合金在1181~1341 K,0.01~10 s~(-1)条件下热模拟压缩试验,得到其在不同条件下高温变形真应力-真应变曲线。采用回归分析和多项式拟合建立了应变补偿高温变形本构方程。结果表明:各变形条件下的流变应力曲线均呈现应变硬化和流动软化,低温高应变速率特征更明显。当应变速率低于1 s~(-1)时,预测值与实验值吻合程度较高,相关系数和平均相对误差绝对值分别为0.9952和5.78%,此修正模型可作为TC4-DT钛合金高温变形本构方程。  相似文献   

5.
为准确预测TC18钛合金热模锻成形过程中金属流动规律,在温度为868~908℃、应变速率为0.001~1 s-1以及最大应变为0.7条件下,采用Gleeble-1500热模拟实验机对TC18钛合金进行等温等应变速率热压缩实验,得到材料在相变点附近的应力应变曲线;通过线性拟合方法得到TC18钛合金Arrhenius峰值应力本构模型,用于TC18钛合金热塑性变形过程中金属流动规律的宏观分析及最大载荷的预测;通过多元非线性拟合方法得到TC18钛合金加入软化因子的Fields-Backofenb本构模型,用于材料热塑性变形过程中金属流动规律的微观分析。结果表明,在实验温度及应变速率范围内,TC18钛合金Arrhenius峰值应力模型以及Fields-Backofen模型预测值均接近实验值。  相似文献   

6.
TC11钛合金热变形本构方程的建立   总被引:1,自引:0,他引:1  
利用Gleeble-1500D热模拟试验机,在变形温度为960~1050℃,应变速率为0.01~10s-1范围内对TC11钛合金进行等温恒应变速率压缩实验。通过真应力-真应变曲线,分析了变形温度和应变速率对流变应力的影响规律,并在Arrhenius双曲正弦型方程的基础上建立了适用于TC11钛合金热变形的本构方程。误差分析表明所建立的本构方程与实验值吻合较好,为制定TC11钛合金锻造工艺提供了理论依据。  相似文献   

7.
TC11钛合金高温变形本构关系研究   总被引:4,自引:0,他引:4  
在Thermecmastor-Z型热加工模拟试验机上,对TC11钛合金在990℃~1080℃、0.001s-1~70s-1范围内进行了高温压缩实验。通过真应力-真应变曲线,分析了流动应力随变形热力参数的变化规律,并在Arrhenius方程的基础上考虑了真应变对流动应力的影响,构建出TC11钛合金的本构关系。误差分析表明,该本构方程有较好的精度,可适合于工程应用。  相似文献   

8.
基于Johnson-Cook模型的TC16钛合金动态本构关系   总被引:4,自引:0,他引:4  
利用Instron液压实验机和分离式Hopkinson压杆动态加载实验,在温度为298~773K、应变率为0.001~15550/s范围内得到TC16钛合金的准静态拉伸及动态压缩条件下的真应力-真应变曲线,并基于Johnson-Cook模型对其进行拟合分析。提出拟合Johnson-Cook方程的简便方法:即引入材料应力-应变曲线发展趋势项,避免对材料绝热温升的估算。结果表明:真应力随应变速率的增加而增加,随温度的增加而降低;当应变速率为10^5/s及温度高于673K时,材料此时的真应力低于准静态下的真应力;获得TC16动态本构关系,能较好地预测TC16钛合金的流变应力。  相似文献   

9.
通过TC18钛合金热模拟压缩实验,得到不同变形条件下的高温变形真应力-真应变曲线.通过加工硬化和动态软化效应,分析变形参数变化对TC18钛合金应力-应变曲线形态和峰值应力的影响.不同变形条件下,TC18钛合金流变曲线呈现出相似的特征,而峰值应力对变形参数的变化却十分敏感.通过Poliak-Jonas准则,分析了不同条件下TC18钛合金在高温变形过程中的软化机制.相同温度下,动态再结晶机制主要发生在低应变速率下的高温变形过程中,并且软化机制的选择对温度不敏感.基于传统的Arrhenius型方程,针对TC18钛合金热变形过程中不同的软化机制,分别建立动态再结晶和动态回复机制下的本构方程.针对识别出的TC18合金在不同变形条件下的软化机制,通过适用的本构模型来描述TC18合金在应变为0.7时真实应力对变形温度、应变速率的响应过程.以动态再结晶为主要软化机制的变形过程,其变形激活能和应变速率敏感系数远远大于以动态回复为主的过程.  相似文献   

10.
Zener-Hollomon参数将金属材料本构方程中变量简化为应力、应变和Z参数,极大简化了材料本构方程的数学模型。结果表明,采用等温恒应变速率热压缩实验得到了TC18钛合金流变应力曲线,应用非线性拟合方法计算得到了基于Z参数的峰值应力σ_p以及峰值应变ε_p函数模型,应用多元非线性拟合方法计算了基于Z参数、峰值应力σ_p以及峰值应变ε_p的TC18钛合金本构模型。  相似文献   

11.
利用分离式Hopkinson压杆装置,在应变率=2000,3000,4000s-1加载条件下,对4种TC4钛合金的等轴组织试样进行了动态压缩试验,得到了不同状态下的动态真应力-应变(σ-ε)曲线。结果表明:随着Al、V含量的增加,TC4钛合金等轴组织试样的平均动态流变应力、均匀动态塑性应变和冲击吸收功都有所增加,动态力学性能有所提高;随着间隙元素含量的增加,TC4钛合金等轴组织试样的平均动态流变应力和冲击吸收功有所提高,而均匀动态塑性应变有所降低。  相似文献   

12.
针对TC4钛合金超塑成形过程中的流变行为、表征及其应用进行了研究。首先,通过恒应变率高温拉伸试验获得TC4钛合金在高温下的流变行为,发现动态回复主要作用于低应变率的变形,动态再结晶主要作用于高应变率下的应力软化机制。此外,建立一套修正的本构模型用以表征材料的高温流变行为,预测值与试验值之间的平均相对误差为13.09%,证实该本构模型适应于表征钛合金超塑成形的应力-应变关系。最后,基于本构模型,结合ABAQUS有限元软件的CREEP蠕变子程序,考虑应变补偿的影响,开发了一种针对TC4钛合金高温超塑行为数值模拟的方法。以高温拉伸试验为研究对象,分别针对数值模拟应变率、应力和应变结果进行分析,验证了该方法的有效性。  相似文献   

13.
为描述Ti-6Al-4V(TC4)两相钛合金在高应变率、高温载荷条件下的复杂力学行为,基于细观塑性变形机理和位错动力学理论,从细观尺度构建一种两相钛合金粘塑性本构模型,并阐释各本构参数与微结构特征量之间的关联及其表征的物理意义。为确定本构参数并提高参数的识别效率与精度,提出一种基于拉丁超立方抽样、Spearman秩相关分析的参数敏感度整体分析方法,并在参数敏感度分析结果和基本遗传算法的基础上,建立基于改进小生境算法、可疑峰值点判断策略和局域精确搜索技术的改进遗传算法,得到了TC4两相钛合金的本构参数。采用应力补偿更新算法,通过显式用户子程序接口VUMAT将两相钛合金本构模型嵌入ABAQUS有限元软件中,实现了钛合金在高应变率、高温条件下动态本构行为的数值模拟。对比模拟结果与实验数据发现,所构建的本构模型描述材料高应变率条件下力学行为的准确性优于Johnson-Cook模型的。  相似文献   

14.
通过Gleeble-3800热模拟实验机,对EA4T车轴钢分别在变形温度为970、1070和1170℃及应变速率为0.01、0.1和1.0 s的条件下进行热压缩实验,压缩至最大真应变为0.8。以得到的真应力-真应变实验数据为基础,分别建立了考虑应变补偿的Arrhenius本构模型和经过遗传算法优化后的Arrhenius本构模型(GA-Arrhenius),用于预测真应力与真应变的关系。为了验证GA-Arrhenius本构模型在真应力预测中的优越性,使用相关系数R、平均绝对误差AARE和均方根误差RMSE来说明其预测精度。实验结果表明:采用Arrhenius本构模型时,R=0.9970、AARE=3.4232%、RMSE=2.8773 MPa;采用GA-Arrhenius本构模型时,R=0.9982、AARE=2.6577%、RMSE=2.2110 MPa。说明相较Arrhenius本构模型,GA-Arrhenius本构模型能够更好地预测EA4T钢热成形过程中的真应力与真应变的关系,可以实现更高精度的有限元数值模拟。  相似文献   

15.
对TC21两相钛合金材料在不同温度下从准静态到高应变率范围(0.001~1200 s~(-1))的动态拉伸力学行为进行了试验研究。通过静态试验机与分离式Hopkinson拉杆装置,获取了TC21钛合金在单轴拉伸载荷下的应力-应变响应曲线。同时通过动态拉伸复元试验方法得到了材料在高应变率下的等温应力-应变响应曲线。由试验结果可见,TC21钛合金的动态拉伸力学行为具备应变率-温度敏感特性,其初始屈服应力随应变率增加而增大,随温度升高而减小,通过引入2个敏感度系数对TC21材料的率-热效应进行了探究。同时根据等温试验数据对Johnson-Cook唯象本构模型进行修正来描述TC21钛合金率-热相关性的本构行为。对比模型预测结果与试验数据,二者吻合良好,验证了修正模型的准确性。  相似文献   

16.
在温度为750~950℃、应变速率为0.01~10 s-1、变形程度为60%的条件下对TC18钛合金的高温流变应力变化规律进行热模拟实验研究。采用Arrhenius双曲正弦函数推导出TC18本构方程。以热模拟压缩实验为基础建立了真应变0.3、0.5时TC18钛合金热加工图。结果表明:TC18钛合金流变应力随着变形温度升高而降低,随着应变速率的升高而升高;在本实验条件下TC18钛合金表现出动态回复和动态再结晶两种软化机制;Arrhenius双曲正弦函数能够很好地描述TC18钛合金本构方程。热加工图结果表明:在真应变为0.3时存在3个非稳定区域,在应变为0.5时存在2个非稳定区域。结合热加工图,较佳的热加工区间在温度为830~920℃,应变速率为0.01~0.32 s-1区域内。  相似文献   

17.
本文对TC21两相钛合金材料在不同温度下从准静态到高应变率范围(0.001-1200s-1)的动态拉伸力学行为进行了试验研究。通过静态试验机与分离式Hopkinson拉杆装置,获取了TC21钛合金在单轴拉伸载荷下的应力-应变响应曲线。同时通过动态拉伸复元试验方法得到了材料在高应变率下的等温应力-应变响应曲线。由试验结果可见TC21钛合金的动态拉伸力学行为具备应变率-温度敏感特性,其初始屈服应力随应变率增加而增大,随温度升高而减小,通过引入两个敏感度系数对TC21材料的率-热效应进行了探究。同时根据等温试验数据对Johnson-Cook唯象本构模型进行修正来描述TC21钛合金率-热相关性的本构行为。对比模型预测结果与试验数据,二者吻合良好验证了修正模型的准确性。  相似文献   

18.
选取700℃/10 h热氧化工艺,对TC4合金进行热氧化处理。通过准静态压缩,纳米压入及分离式Hopkinson压杆冲击等测试,研究了热氧化对TC4静/动态力学性能的影响。此外,借助扫描电镜(SEM)分析了动态冲击后氧化层的形貌。结果表明,热氧化TC4具有较好的静态力学性能和较高的应变率强化效应。氧化层在较低冲击应变率下,能够提高TC4的塑性;而应变率过大,则会降低其塑性。最后,经过对本构模型修正和实验数据拟合,得到了室温下热氧化TC4的Johnson-Cook(J-C)本构方程。修正曲线与实验结果对比,两者在塑性平台区吻合较好。  相似文献   

19.
为了准确描述钛合金在高应变率、高温载荷下的热粘塑性本构行为,以及因材料内部出现绝热剪切带而导致材料流变应力减小的定量关系,构造功热转换系数β与应变率?(5)之间的函数关系,提出一种基于修正Johnson-Cook模型的钛合金热粘塑性动态本构关系,并通过以最小二乘法为目标函数的局部搜索优化算法,对基于实验数据的本构参数进行快速优化识别。最后利用应力补偿更新算法,通过显式用户子程序VUMAT将热黏塑性本构模型嵌入ABAQUS软件中,得到Ti-6Al-4V钛合金在不同应变率、温度条件下的单轴动态应力-应变曲线。数值模拟结果与实验数据吻合良好,表明该修正模型能准确描述钛合金高应变率下的热黏塑性变形,可适用于各种应变率下钛合金本构行为的描述。  相似文献   

20.
为弥补现有航空钛合金切削加工本构模型研究的不足,提出基于正交切削理论的材料本构模型构建方法。根据正交切削理论建立剪切区内应力、应变、应变率、温度以及二维切削力的数学模型,开发以剪切区长度和厚度比值为迭代变量的建模技术,结合动态压缩力学性能实验(SHPB实验)和直角铣削实验,通过对各变形参数的数学求解,建立航空钛合金切削加工本构模型。在此基础上,进行材料本构模型的分析和实验验证。结果表明:航空钛合金材料在切削加工中具有明显的应变硬化特性、温度敏感特性和应变率敏感特性;钛合金随着应变率的增大,流动应力的增量逐渐减小,材料的应变率敏感性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号