首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法合成Ca_(0.92-x-y)Sr_xBa_yWO_4∶0.08Eu~(3+)(x=0,0.1~0.4;y=0,0.1~0.3)系列红色荧光粉。对其晶体结构、表面形貌和发光性能进行表征。结果表明:样品荧光粉为体心四方白钨矿结构;Sr~(2+)、Ba~(2+)的掺杂改变了荧光粉的形貌和尺寸;样品的激发光谱由位于350~550nm的系列激发峰构成,最强激发峰位于近紫外光区的395nm处,最强发射峰位于红光区域的617nm处,对应于Eu~(3+)的~5 D_0→~7 F_2特征跃迁;Sr~(2+)、Ba~(2+)的掺杂会改变基质的晶格参数和晶体对称性,从而提高荧光粉的发射强度,Sr~(2+)、Ba~(2+)的最佳掺杂量分别为x=0.2,y=0.15。  相似文献   

2.
采用高温固相法首次合成了由Eu3+和Tb3+共激活的Gd2MoB2O9白色荧光粉,并对其发光性质进行研究。该荧光粉在近紫外光(375nm)激发下发出较强的白色荧光(常温),光谱测试显示Gd2MoB2O9∶Eu3+,Tb3+的发射光谱中存在3个发射峰,分别位于486,543和613nm处,能够合成较理想的白光;激发光谱在250~400nm处均有较强的吸收,能与紫外LED很好地匹配,适用于白光LED。  相似文献   

3.
通过高温固相合成工艺制备出白光LED用BaSi_2O_5∶Eu~(3+)红色荧光粉,通过X射线衍射、荧光光谱、紫外-可见光光谱仪对材料的晶格结构、发光特性和白光LED灯珠的光谱特性进行了测试。研究结果表明,Eu~(3+)的掺入没有改变基质的晶格结构,在Eu~(3+)掺杂浓度为5.0%(mol,摩尔分数)时,荧光粉的发射强度最高,最强激发峰为395nm,最强发射峰为614nm,通过结合紫光芯片和蓝黄荧光粉制备的白光LED灯珠,相关色温为4789K,显色指数为92,因此,BaSi2O5∶Eu~(3+)红色荧光粉是一种适合于紫光芯片应用的材料。  相似文献   

4.
以BaCO_3、BaF_2、H_3BO_3和氧化铕(Eu_2O_3)原料,采用高温固相反应法制备了一系列新型荧光材料Ba_(4-4x) B_(11)O_(20)F∶4xEu~(3+)(x=0.06、0.08、0.10、0.12、0.14)。利用XRD、SEM和荧光分光光度计对粉体结构、形貌和发光性能进行表征,并研究了铕离子(Eu~(3+))掺杂量对Ba_(4-4x)B_(11)O_(20)F∶4xEu~(3+)发光性能的影响。研究结果表明在激发波长为465nm的条件下,材料的发射峰主要位于592、598、616、654和700nm处;随着Eu~(3+)离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为x=0.12。  相似文献   

5.
采用传统的高温固相反应法在较低温度下制备红色荧光体Eu~(3+)掺杂的Ca_2SiO3_Cl_2,研究了Ca_(2-x)SiO_3Cl_2∶xEu~(3+)(x=3%~18%)的晶体结构和发光性质。激发和发射光谱表明,样品可以被近紫外350~420nm波段激发,最强激发峰位置位于394nm,发射光谱呈现出Eu~(3+)的特征红色发光,谱带峰值位置在592nm和620nm,分别对应于~(5 )D_0→~7F_1和~(5 )D_0→~7F_2特征跃迁。结果表明:最强发射对应的掺杂浓度是15%(摩尔分数),样品Ca_(1.85)SiO_3Cl_2∶0.15Eu~(3+)荧光粉是一种具有应用潜力的近紫外激发三基色白光LED用红色荧光粉。  相似文献   

6.
用溶胶-凝胶优化法合成了红色荧光粉MMoO4∶Eu3+(M=Ca、Sr、Ba),通过SEM、PL表征了荧光粉的形貌及发光性能。结果表明:烧结温度为800℃时,颗粒粒度分布均匀,粒径约为0.5-1μm,有很好的分散性;掺杂0.25molEu2O3在395nm和464nm两主激发峰下,均可得到616nm处红光发射极峰,属于Eu3+典型的5 D0→7F2的跃迁所致;助熔剂NH4F明显提高了钼酸盐荧光粉的发光强度;通过比较M0.5MoO4∶Eu03.+25,Li0+.25(M=Ca、Sr、Ba)发光性能得知:在395nm激发下,Ca0.5MoO4∶Eu30.+25,Li0+.25荧光粉最有利于提高发光强度。  相似文献   

7.
采用水热法对高温固相反应制备的Ba_(3.52)B_(11)O_(20)F∶0.48Eu~(3+)红色荧光粉进行重结晶,并对其水热重结晶工艺、发光性能等进行了研究。利用XRD和SEM对水热处理前后的粉体进行了结构和形貌表征,通过荧光光谱分析研究了水热重结晶工艺对粉体荧光强度的影响,得出在溶液pH=6.0,加水量为20mL,140℃恒温温度下所获得的荧光粉的荧光强度最强,比水热重结晶前高了72%。  相似文献   

8.
采用高温固相法制备了GdVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和光致发光光谱(PL)对样品的物相、形貌及发光性能进行了表征。结果表明:所合成的GdVO_4:Eu~(3+)红色荧光粉为四方晶系,表面为类球形。激发光谱中,位于382 nm、395 nm、418 nm和466 nm的激发峰分别归属于~7F_0→~5L_7、~7F_0→~5L_6、~7F_0→~5D_3及~7F_0→~5D_2跃迁。发射光谱中,位于593 nm、625 nm、654 nm和701 nm的发射峰对应Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2、~5D_0→~7F_3及~5D_0→~7F_4跃迁。当Eu~(3+)掺杂量为7%,800℃煅烧8 h时,GdVO_4:Eu~(3+)红色荧光粉CIE色坐标为(0.6426,0.3530),荧光寿命为0.52 ms,是一种有望用于白光LED的高效红色荧光粉。  相似文献   

9.
白光LED用Eu~(3+)激活红色荧光粉的研究进展   总被引:1,自引:0,他引:1  
白光LED具有体积小、能耗低、寿命长、环境友好等优点,是未来照明光源的发展方向。现阶段,白光LED的低显色指数和高色温限制了其发展,而红色荧光粉的性能对白光LED显色指数的提高及色温的改善非常关键。着重介绍了国内外白光LED用Eu3+激活红色荧光粉的几大主要体系的研究进展,并指出了目前红色荧光粉存在的问题及其未来的发展趋势。  相似文献   

10.
在不添加助剂的条件下,用微波共沉淀法法制备了铕、铽(Eu~(3+)、Tb~(3+))共掺杂的钨酸钙(CaWO_4)荧光粉。利用X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、荧光光谱(PL)等表征手段,对荧光粉的物相组成、形貌和发光性能进行了分析。研究了Eu~(3+)、Tb~(3+)的掺杂比例及总掺杂量、反应温度及反应物浓度对荧光性能的影响。结果表明,Eu~(3+)、Tb~(3+)的掺杂摩尔比例、总掺杂量、温度以及反应物浓度对荧光粉的发光性能均能产生影响,其中在温度为80℃、反应物浓度为0.12mol/L且Eu~(3+)和Tb~(3+)总物质的量比金属离子总物质的量为13.1%时,得到的Eu~(3+)、Tb~(3+)共掺荧光粉在256nm激发下发射光谱色坐标为(0.270,0.236),位冷白光区。  相似文献   

11.
采用高温固相法制备双层钙钛矿Sr3Ti2O7:Eu3+系荧光粉。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱,研究了不同煅烧温度对双层钙钛矿Sr3Ti2O7:Eu3+荧光粉的晶体结构、形貌和发光性能的影响。结果表明:荧光粉在煅烧温度为1300℃时为纯双层钙钛矿Sr3Ti2O7相,且其有效激发波长为在395nm和465nm,这与当前近紫外和蓝光LED芯片的输出波长相匹配,激发产生的相应发射波长分别为618nm和626nm。该荧光粉是一种理想的白光LED用红色荧光粉。  相似文献   

12.
采用高温固相法制备了NaY(WO4)2:Eu3+发光材料。分别用X射线粉末衍射(XRD)、发光光谱(PL)等手段研究了发光粉的晶体结构以及发光性能。XRD结果表明,Eu3+掺杂浓度达到25%(摩尔分数)时,仍然能够形成纯相的NaY(WO4)2:Eu3+多晶粉末。NaY(WO4)2:Eu3+的激发光谱由强度很大的宽激发带(220~300nm)和锐线谱(峰值位于393nm和465nm)组成,其中宽激发带源于O2-→W6+和O2-→Eu3+电荷转移,锐线谱属于Eu3+的4f-4f跃迁吸收,发射光谱显示随Eu3+浓度的增大,NaY(WO42):Eu3+光发射强度逐渐增大,当Eu3+浓度为20%时,发射强度达到最大,随后出现浓度猝灭。  相似文献   

13.
采用固相法成功制备了Ba_5Zn_4Y_8O_(2)∶Er~(3+),Yb~(3+)上转换发光粉。X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,发光粉结晶良好,平均粒径1~5μm,呈碎颗粒状。在980nm激光器激发下,肉眼可见极其明亮的橙色发光。光谱测试结果证实,发光粉发射峰位于520~530,530~550和650~690nm间。其中,绿光发射源于Yb~(3+)→Er~(3+)两步能量传递对2H11/2、4S3/2能级的粒子布居,及随后向基态的跃迁。红光发射则主要与~4I_(11/2)(Er~(3+))+~4F_(7/2)(Er~(3+))→~4F_(9/2)(Er~(3+))+~4F_(9/2)(Er~(3+))交叉弛豫和~4S_(3/2)(Er~(3+))+~2F_(7/2)(Yb~(3+))→~4I_(13/2)(Er~(3+))+~2F_(5/2)(Yb~(3+))能量反传递、~4I_(13/2)→~4F_(9/2)激发态吸收及~4F_(9/2)→~4I_(15/2)跃迁有关。由于交叉弛豫和能量反传递可有效提高红光强度并削弱绿光发射,因此红光发射强度可达到绿光强度的6~13倍。在7%(摩尔分数)的Yb~(3+)掺杂条件下,Er~(3+)的最佳掺杂浓度为3%(摩尔分数)。提高激发光功率密度不仅可以使UCL增强,还可以进一步提高红绿光分支比。在高功率激发下,还观察到了三光子吸收产生的蓝光和蓝绿光发射。  相似文献   

14.
系统介绍了YAG:Ce~(3+)荧光粉制备技术的研究现状,综述了目前制备中应用较多的溶胶-凝胶法、沉淀法、喷雾热解法、燃烧法、固相法等几种方法的国内外新进展,并对其优缺点进行了综合比较.分析了掺杂以及电荷补偿、助熔剂、包覆及热处理与使用温度等因素对荧光粉发光性能的影响,阐述了白光LED用YAG:Ce~(3+)荧光粉性能的研究进展及发展趋势.  相似文献   

15.
开发高效的红色荧光粉是提高白光LED显色性、降低白光LED色温的关键因素。综述了稀土镨离子(Pr~(3+))激活白光LED用红色荧光粉的最新研究进展。介绍了Pr~(3+)作为激活剂的作用机理,并根据基质的分类,重点阐述了Pr~(3+)掺杂的硅酸盐体系、钨/钼酸盐体系、钛酸盐体系红色荧光粉的研究状况,归纳了Pr~(3+)激活的上述基质的发光特点。最后对该研究领域存在的问题、发展的方向分别进行了分析和展望。  相似文献   

16.
张梅  陈锋  何鑫  冯立弯  温锦秀  王平 《材料导报》2012,26(12):59-61,81
以硼酸和碱土氟化物作为助熔剂,调整助熔剂比例和组分,采用高温固相法合成一系列白光LED用YAG∶Ce3+发光材料。采用XRD、扫描电镜(SEM)和荧光光谱(PL)等对样品进行表征。研究表明,合适的助熔剂有助于降低样品的烧结温度,不会有杂相产生,加入不同浓度和成分的助熔剂对样品的发射、激发光谱形状和峰值波长位置无影响,但对发光强度影响较大;采用助熔剂质量分数为0.4%(0.2%H3BO3-0.2%BaF2)时,所合成样品的颗粒比较均匀,发光性能的增强最为有效。将其和蓝光Ga(In)N芯片封装成白光LED,光效也得到显著提高。封装后白光LED的色坐标为(0.3341,0.4190),色温为5470K,显色指数为67,光效可达到78.3lm/W,高于其它条件合成荧光粉封装的白光LED。  相似文献   

17.
采用高温固相法制备绿色荧光粉Y2GeO5∶Bi3+,Tb3+,利用X射线衍射仪、扫描电镜、激光粒度仪和光致发光光谱对其性能进行表征,并探讨Bi3+和Tb3+离子掺杂量对发光性能的影响。结果表明,掺杂Bi3+和Tb3+分别作为敏化剂和发光中心进入到Y2GeO5的晶格中,最佳掺杂量分别为1.2%、8%(摩尔分数);样品为类球形颗粒,其d50为6.39μm;峰值为314 nm的激发带由Bi3+离子、基质激发峰以及Tb3+的7F6→5D1复合而成;在314 nm波长激发下,发射光谱呈现峰值为373 nm宽带和位于430650 nm的多个锐利峰;Bi3+离子掺杂使5D4→7F5的发光强度提高3倍。  相似文献   

18.
高飞  陈翔  卢滔 《材料导报》2013,27(Z1):186-188
采用溶胶-凝胶法合成了可用于395 nm及465 nm激发的Ca1-2xBxEu MoO4 (B=Li+,Na+,K+)红色荧光粉.用XRD和荧光光谱对其结构、发光性能进行了表征,并就不同电荷补偿对其发光性能的影响进行了分析.同时研究了煅烧温度及Eu3+浓度对所得荧光粉发光性能的影响.  相似文献   

19.
20.
采用高温固相法制备了KBaY(MoO_4)_3∶Eu~(3+)红色荧光粉,并借助于X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光光谱以及荧光寿命等表征手段对其结构、形貌及发光性能进行了分析。XRD结果显示,KBaY(MoO_4)_3∶Eu~(3+)样品衍射图与纯相KBaY(MoO_4)_3完全一致,Y~(3+)离子可以完全被Eu~(3+)离子替代而不会使晶体结构发生改变。激发光谱显示,KBaY(MoO_4)_3∶Eu~(3+)在394nm处具有一个强激发带,因此样品可以被近紫外光有效激发。荧光光谱结果显示,在KBaY(MoO_4)_3基质中,Eu~(3+)离子的最佳掺杂浓度高达90%,证明KBaY(MoO_4)_3∶Eu~(3+)的浓度猝灭效应比较弱;样品发光强度随温度升高而下降,当温度升高到200℃时,样品发光强度约为30℃时的63%,通过对ln(I_0/I_T-1)~1/kT的关系曲线进行拟合得到KBaY(MoO_4)_3∶Eu~(3+)的激活能为0.261eV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号