首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究碳纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立非线性热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与炭化规律。结果表明:建立的热响应方程组可以有效预测碳纤维环氧树脂的温度-时间历程,与实验值吻合较好;随着加热时间延长,炭化层范围逐渐扩大,温度趋于稳定,材料温度-深度分布由非线性转变为线性;随着深度增加,碳纤维环氧树脂复合材料温升速率减小,达到热解所需的时间更长,炭化过程变慢,且单位温度的密度变化量峰值随深度增加向低温方向移动;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,深度越大剩余质量分数越小,炭化程度越高。  相似文献   

2.
为研究航空复合材料在火灾环境下的热响应,考虑材料热解过程,建立了复合材料热响应方程组,推导了显式有限差分格式,研究了玻璃纤维/酚醛树脂复合材料内部瞬态热响应与碳化规律。结果表明:建立的非线性热响应方程组与计算方法能够预测玻璃纤维/酚醛树脂复合材料的温度-时间历程,800 s时的受热表面温度达到了1048℃,背面温度为226℃,与实验值吻合较好;随着材料深度增加,材料达到热解温度所需的时间更长,材料密度下降速率随之降低,碳化过程变慢;热解反应区中不同深度位置的材料剩余质量分数在同一温度下略有不同,位置越深,剩余质量分数越小,碳化程度越高;随着时间推移,发生热解的材料比重增大,碳化范围逐步扩大,热解层厚度范围也逐渐扩大。   相似文献   

3.
碳纤维改性环氧树脂复合材料研究进展   总被引:1,自引:0,他引:1  
介绍最近几年碳纤维增强环氧树脂复合材料研究的前沿动向,重点叙述了碳纤维表面处理方法以及碳纤维在环氧树脂的应用,综述了环氧树脂/碳纤维复合材料的研究发展。  相似文献   

4.
采用瞬态热线法和闪光法分别测量了多种结构参数的三维机织碳纤维/环氧树脂复合材料的导热系数。通过对3D正交机织碳纤维/环氧树脂复合材料的有限元模拟可以看出,3D正交机织碳纤维/环氧树脂复合材料内经纱、纬纱和Z向纱的导热作用在不同的受热形式下会发生变化。采用瞬态热线法测量时,2.5D机织碳纤维/环氧树脂复合材料的导热系数低于2.5D经向增强结构,同时高于3D正交结构,而采用闪光法测量时,2.5D经向增强和3D正交碳纤维/环氧树脂复合材料的导热系数均小于2.5D机织结构。这是由于在使用不同的测量方法时,三维机织碳纤维/环氧树脂复合材料内部相同的纱线系统在导热过程中所起的作用并不相同。随着纤维体积含量的提高,瞬态热线法和闪光法测得的2.5D机织碳纤维/环氧树脂复合材料的导热系数都在不断提高。由于经纱的屈曲,采用闪光法测量时,导热性能提升更加明显。研究结果表明,三维机织碳纤维/环氧树脂复合材料在不同受热形式下具有不同的热响应机制。  相似文献   

5.
碳纤维/环氧树脂(C/E)复合材料在制孔过程中容易产生毛刺、撕裂和分层等多种加工损伤, 对加工损伤进行合理有效的评价是复合材料构件经济性和可靠性的重要保证。针对现有纤维增强复合材料制孔损伤评价方法的单一性和局限性, 首先, 基于统计方法的相对指标法, 提出了综合考虑毛刺、撕裂及分层损伤的C/E复合材料制孔损伤综合评价的新方法, 建立了损伤因子的数学模型。随后, 根据评价指标的关联性, 采用刀具磨损试验确定了数学模型中的所有系数, 以及判别C/E复合材料制孔质量合格与否的临界损伤因子值。最后, 通过超声波探伤对提出的评价方法的准确性进行了验证。结果表明:采用提出的C/E复合材料制孔损伤综合评价方法, 能够有效地反映和评价不同加工参数下的制孔质量状况。   相似文献   

6.
碳纳米管/碳纤维/环氧树脂复合材料研究   总被引:1,自引:0,他引:1  
制备了碳纳米管(CNTs)/碳纤维(CF)/环氧树脂(EP)三元复合材料。研究了CNTs含量对复合材料层间剪切强度、弯曲强度和弯曲模量的影响,并采用场发射扫描电镜分析了CNTs在基体树脂中的分散情况。结果表明:复合材料性能的变化源自于CNTs在基体树脂中的分散状态。当CNTs含量为0.2%(wt,下同)时,复合材料剪切强度和弯曲强度达到最大值,分别为99.2MPa和1811.4MPa,但其弯曲模量下降了8.7GPa。当CNTs添加量达到1%时,其弯曲模量达到135.9GPa,较未加入CNTs时提高了11.1%,层间剪切强度和弯曲强度分别降低了5.5MPa和359.5MPa。  相似文献   

7.
碳纤维/环氧树脂复合材料高速冲击性能   总被引:1,自引:0,他引:1  
采用树脂传递模塑(RTM)工艺制备碳纤维/环氧树脂复合材料,通过空气炮冲击实验研究树脂韧性和碳纤维类型对复合材料抗高速冲击性能的影响,并对高速冲击后的试样进行压缩性能测试,研究高速冲击损伤对复合材料剩余压缩性能的影响。结果表明:树脂的韧性可以降低复合材料遭受高速冲击时的内部损伤程度,大幅提高复合材料的抗高速冲击性能和冲击后剩余压缩性能;T700S碳纤维增强复合材料抗高速冲击性能优于T800H碳纤维增强复合材料;复合材料的破坏模式与冲击速率有关,冲击速率较低时,复合材料弹击面出现圆形凹坑,背弹面出现鼓包;冲击速率较高时,复合材料弹击面出现圆形通孔,背弹面出现沿纤维方向撕裂断口。  相似文献   

8.
对编织碳纤维/环氧树脂(CF/EP)复合材料的三维热扩散性能进行有限元仿真研究。通过TexGen软件创建20层编织CF/EP复合材料三维仿真模型,计算了不同孔隙率样品的有效体积比热和热导率来设置材料属性,并使用幅值曲线模拟周期性点光源进行仿真。首先以孔隙率为0%的样品为例,采用非线性拟合求解热扩散系数,选出最优的调制频率范围为0.1~2 Hz。在此基础上研究了孔隙率对复合材料热扩散性能的影响。结果表明,编织CF/EP复合材料在平面内的热扩散系数随着孔隙率的增大而减小,孔隙率小于1.55%时,孔隙率每增加1%,热扩散系数下降5.4%。孔隙率大于1.55%时,下降速度变慢,仅为2.4%。在平面内沿着经纱和纬纱方向的热扩散较快,经(纬)纱45°方向的热扩散较慢,而在垂直方向上,由于点光源的穿透性使法向的热扩散最快,体现了热扩散的各向异性。   相似文献   

9.
我们用裂解气相色谱法研究了复合材料界面化学反应,实验结果表明:碳纤维表面基团可与环氧树脂发生界面化学反应,温度升高对反应有加速作用且在高温下温度的加速作用更显著。硝酸煮沸氧化处理1小时碳纤维表面基团与β萘酚缩水甘油醚环氧反应,140℃、160℃、180℃反应5小时和250℃反应20分钟,碳纤维表面基团反应量分别可达0.009gmeq/g,0.014meq/g,0.033meq/g和0.043meq/g。   相似文献   

10.
刘静  曹意林  李刚  陈勃翰 《复合材料学报》2018,35(11):2979-2986
采用高能激光束对聚丙烯腈(PAN)基碳纤维进行表面改性。利用SEM、EDS、FTIR、XRD、万能试验机等表征手段,对改性前后碳纤维微观形态、成分变化、物相结构、力学性能进行表征,系统地研究了激光束对碳纤维微观组织变化、性能变化等的影响规律,探索激光束对碳纤维的作用机制。结果表明,碳纤维经激光表面改性后,其表面的粗糙度和比表面积增加,碳纤维的浸润性得到提升,且激光束的功率越高、扫描速度越低,碳纤维浸润性越好。改性后的碳纤维化学成分、微观结构及官能团种类没有改变;改性后的碳纤维官能团种类没有改变,说明激光改性过程主要以物理过程为主;激光改性没有改变碳纤维的微观结构,改性后微晶尺寸略有减小,有利于改善碳纤维与环氧树脂的界面黏结性能。激光表面改性碳纤维/环氧树脂复合材料的拉伸强度和冲击强度均有不同程度的提高,当碳纤维质量分数为0.2wt%、激光改性功率为150 W时,碳纤维/环氧树脂复合材料的拉伸强度提高了59%,冲击强度提高了52%。  相似文献   

11.
以硅烷偶联剂和正硅酸乙酯(TEOS)为前躯体, 以固体酸-对甲苯磺酸为催化剂制备硅溶胶, 利用硅溶胶对碳纤维进行表面改性后, 以环氧树脂为基体, 制备碳纤维增强环氧树脂复合材料。利用SEM、 TEM、 万能试验机、 偏光显微镜等对表面改性前后的碳纤维形态、 力学性能及碳纤维/环氧树脂复合材料的界面性能进行表征, 研究了硅溶胶改性碳纤维对其复合材料界面性能影响。结果表明, 硅溶胶处理碳纤维后, 在碳纤维表面原位生成具有膜-粒结构的表面层, 改性后碳纤维的强度由2.41 GPa提高到3.00 GPa, 界面性能也得到了明显改善, 界面剪切强度(IFSS)提高了51.41%。  相似文献   

12.
微波固化改性环氧树脂/碳纤维复合材料研究   总被引:1,自引:0,他引:1  
为探寻微波固化改性环氧树脂/碳纤维复合材料修复不同基体材料损伤的最佳工艺,采用红外热像仪观察不同微波工艺对其固化后的温度变化情况,并利用电子万能试验机对固化后的试样进行了拉伸强度测试.结果表明:将改性环氧树脂/碳纤维复合材料粘接在玻璃纤维复合材料基体上时,随着微波固化功率和固化时间的增加,固化结束后表面温度明显增加,最高温度达到270℃,而当将其粘接在45钢基体上时,随着微波固化功率的增加,固化结束后表面温度变化不明显,最高温度仅为60℃.利用该复合材料修复不同基体材料的损伤,其静强度恢复率达到90%以上,可以满足野战条件下,装备零部件损伤快速修复的要求.  相似文献   

13.
以短切碳纤维毡和环氧树脂为原材料制成复合材料,考察了该材料在单向拉伸载荷下的力阻响应。实验结果表明,该材料具有正力阻效应(拉应变引起材料的电阻增大)。其中,单层碳纤维毡/环氧树脂复合材料的力阻灵敏度可达13.9,但在加载过程中其电阻表现出逐渐衰减趋势;多层碳纤维毡/环氧树脂复合材料的力阻性能更为稳定,但随着层数的增加灵敏度逐渐降低,5层复合材料的力阻灵敏度下降到5.7。多层复合材料的立体导电网络是其稳定性提升和灵敏度下降的主要原因。将碳纤维毡/环氧树脂多层复合材料敷设在梁结构表面形成智能表层,利用其力阻性能实现了梁结构在循环载荷下的变形监测以及在单调载荷作用下损伤监测。  相似文献   

14.
通过对碳纤维及环氧树脂进行改性处理,在降低树脂含量的同时提高其结合强度来改善碳纤维复合材料的力学性能。  相似文献   

15.
碳纤维/有机硅改性环氧树脂复合材料性能研究   总被引:4,自引:2,他引:4  
介绍了一种碳纤维/有机硅改性环氧树脂复合材料的性能研究情况.对该复合材料的力学性能、热常数和烧蚀性能进行了初步测试.结果表明,其拉伸强度达到558MPa,拉伸模量达到44.0GPa,层间剪切强度为16.6MPa,导热系数不超过0.3 W/(m*K),氧-乙炔烧蚀的线烧蚀率为0.049mm/s,质量烧蚀率为0.0595g/s.通过与常用的碳/酚醛材料比较,碳纤维/有机硅改性环氧树脂复合材料的性能较优.  相似文献   

16.
基于压拉平衡为特征的新一代先进复合材料的需求,开展了碳纤维截面形状和尺寸对碳纤维/环氧树脂复合材料压缩强度的影响研究。有限元模拟和试验结果均表明,增大碳纤维直径可以提高复合材料压缩强度。另外碳纤维截面形状也对复合材料压缩强度有影响,圆形截面优于椭圆形截面。   相似文献   

17.
通过控制缠绕线型改变轴管纤维角度,制备了一种轴向刚度渐变、压溃稳定的碳纤维增强树脂基复合材料(CFRP)变刚度薄壁圆管。对变刚度、[±45°]n以及[90°]n三类CFRP缠绕轴管进行轴向准静态压缩测试,结合数字图像相关技术(DIC)及有限元结果,对比三类结构压溃初始应变模式、损伤演化与应力状态结果,研究了变刚度结构的压溃响应与破坏机制。结果表明:不同纤维角度CFRP轴管因轴向刚度不同,压溃的初始破坏与损伤演化过程相异,三类结构产生不同的压溃响应与破坏模式。变刚度区连续变化的大角度纤维能有效地引发分层和"开花式"混合破坏,缓慢释放应变能,使变刚度CFRP轴管吸能效果明显优于其他两类结构。其峰值载荷为66.97 kN,压溃效率为50.8%,比吸能为10.1 kJ/kg,相对于[±45°]n结构比吸能提升156.35%,压溃效率提升518.76%,相对于[90°])n结构比吸能提升16.9%,压溃效率降低27.3%。  相似文献   

18.
碳纳米管对碳纤维/环氧树脂复合材料力学性能的影响   总被引:1,自引:0,他引:1  
高颖  吕亚清  潘丽 《功能材料》2012,43(Z1):70-72,77
为了探讨碳纳米管(CNTs)对碳纤维/环氧树脂复合材料(CF/ER复合材料)力学性能与疲劳寿命的影响,利用静态拉伸实验和拉-拉疲劳实验沿纤维方向对CF/ER复合材料和CNTs增强CF/ER复合材料(CNTs/CF/ER复合材料)进行了对比研究,同时利用X射线仪与扫描电镜对试样进行了观察.研究结果表明,CNTs的加入,虽然对CF/ER复合材料的拉伸力学性能影响不明显,但可以提高高周疲劳寿命约4倍,使各种实验应力水平下的裂纹密度降低9.5%以上,并可观察到试样中CNTs的拔出、破裂及桥联作用.由此可见,CNTs的加入可明显改善CF/ER复合材料的疲劳寿命.  相似文献   

19.
采用双酚A型环氧树脂(DGEBA)、改性咪唑(MIM)及改性脂肪胺(MAA)研制快速固化树脂体系。分别利用DSC和流变仪测试了树脂体系的固化特性与流变行为,优选了树脂配方。采用真空辅助树脂灌注工艺(VARIM)制备了快速成型的碳纤维/环氧复合材料层板,考察了层板的成型质量和力学性能,并与常规固化的层板性能进行了对比。结果表明:采用优选的树脂配方,120 ℃下树脂在5 min内固化度达95%,碳纤维/环氧复合材料层板成型固化时间可控制在13 min以内,固化度达95%以上,并且没有明显缺陷;与常规固化相比(固化时间大于2 h),快速固化碳纤维/环氧复合材料层板的弯曲性能和耐热性能降低幅度较小。  相似文献   

20.
碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制   总被引:1,自引:0,他引:1       下载免费PDF全文
通过试验及数值模拟对碳纤维/环氧树脂复合材料缠绕接头轴向拉伸失效机制进行研究。基于ABAQUS有限元软件,通过连续介质损伤模型及内聚区模型,分别对碳纤维/环氧树脂复合材料缠绕接头各部件及界面进行模拟,编写用户自定义材料子程序(UMAT),建立复合材料的渐进损伤模型,最终得到碳纤维/环氧树脂复合材料缠绕接头的应力分布和载荷-位移曲线,并与试验结果对比确定结构的失效机制。结果表明:有限元分析所得碳纤维/环氧树脂复合材料缠绕接头损伤部位及失效模式与试验吻合,失效载荷与试验值相差较小,证明仿真分析方法的有效性。通过对比失效模式发现,拉伸载荷作用下,链环是主承力部件,其弧形端部是应力集中处,纤维断裂即从此处开始发生并向外扩展,导致链环断裂及整体结构破坏。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号