首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对物理法制备的再生铜合金粉末进一步合金化,通过机械合金化(MA)结合放电等离子烧结(SPS)的方法制备了(Fe_(40)Ni_(40)Mn_(20))_(50)Cu_(50),(Fe_(38)Ni_(38)Ni_(38)Mn_(19)Al_(5))_(50)Cu_(50),(Fe_(36)Ni_(36)Mn_(18)Al_(10))50 Cu_(50)和(Fe_(32)Ni_(32)Mn_(16)Al_(20))_(50)Cu_(50)四种中熵合金块体,并研究了Al元素的含量对中熵合金微观组织与力学性能的影响。结果表明:在高能球磨60 h之后合金粉末完成合金化,四种中熵合金粉末均形成单一FCC相的过饱和固溶体且有微量WC杂质。经SPS烧结后,(Fe_(40)Ni_(40)Mn_(20))_(50)Cu_(50),(Fe_(38)Ni_(38)Mn_(19)Al_(5))_(50)Cu_(50)和(Fe_(36)Ni_(36)Mn_(18)Al_(10))50 Cu_(50)形成了由富Cu的FCC1相和富Fe-Ni的FCC2相组成的双相FCC结构,并具有超细晶+微米晶的多尺度结构;而(Fe_(32)Ni_(32)Mn_(16)Al_(20))_(50)Cu_(50)由富Cu的FCC主相和少量富Fe-Mn的FCC2相及富Ni-Al的BCC相(B2)组成。随着Al含量的提高,四种中熵合金的塑性逐渐降低,而强度和硬度逐渐提高。(Fe_(40)Ni_(40)Mn_(20))_(50)Cu_(50)合金的压缩屈服强度、抗压强度和维氏硬度分别为878 MPa,1257 MPa和248.5HV。与(Fe_(40)Ni_(40)Mn_(20))_(50)Cu_(50)相比,(Fe_(32)Ni_(32)Mn_(16)Al_(20))_(50)Cu_(50)的压缩屈服强度和硬度分别提高了50.1%和50.4%,断裂应变由19.55%下降至8.31%。  相似文献   

2.
本文采用电弧熔炼方法制备了两组Mn_(50-x)Cr_xNi_(40)In_(10)(x=0,1,2)多晶系列样品,通过改变热处理的冷却速率与Cr掺杂量对样品的相变、磁性以及磁熵变进行了研究。结果表明,与淬火样品相比,慢冷合金的马氏体相变温度较高。随着Cr含量的增加,奥氏体的磁化强度逐渐降低,而马氏体的磁化强度逐渐增强。与淬火样品相比,慢冷样品在相变温度附近,奥氏体和马氏体的磁化强度增强。这主要是由于慢冷样品的原子有序度较高,从而导致其较高马氏体相变温度以及强磁性。不同的热处理冷却速率对Mn_(49)Cr_1Ni_(40)In_(10)合金的磁熵基本没有影响。此外,施加3 T磁场时,在Mn_(49)Cr_1Ni_(40)In_(10)合金中观察到约为13 J/(kg·K)的大的熵变。  相似文献   

3.
本工作通过磁控电弧炉制备了一系列Co_xMn_(2-x)CrFeNi(x=0.25—1.75)高熵合金,并利用XRD、SEM、EDS、DSC等手段研究了这些合金在铸态、800℃和1 000℃退火720 h后的相稳定性。研究发现,Co含量不低于15%(原子分数)的Co_xMn_(2-x)CrFeNi合金在铸态及800℃和1 000℃退火720 h后均为FCC单相。铸态Co_(0.25)Mn_(1.75)CrFeNi为FCC+BCC两相,但经800℃或1 000℃退火720 h后,该合金中的BCC相消失,Cr元素富集,转变为FCC+σ相。在800℃退火720 h后的Co_(0.5)Mn_(1.5)CrFeNi不仅从FCC基体中析出了σ相,还析出了富Cr的BCC相。DSC测试表明,FCC相的开始熔化温度随Co含量的增加而升高;σ相将在1 097~1 120℃分解。此外,基于TCFE数据库的热力学计算结果表明,虽然通过计算可以较准确地预测FCC相的稳定性,但是不能准确地预测BCC相和σ相的稳定性。也就是说,Co-Cr-Fe-Mn-Ni体系中σ相和BCC相的热力学模型参数还需要进一步优化。  相似文献   

4.
采用单辊急冷法制备(Fe_(0.52)Co_(0.30)Ni_(0.18))_(73)Cr_(17)Zr_(10)非晶薄带,并对该合金进行等温退火。采用XRD,AFM,VSM研究退火温度对(Fe_(0.52)Co_(0.30)Ni_(0.18))_(73)Cr_(17)Zr_(10)非晶合金的组织结构和磁性能的影响。结果表明:非晶合金晶化过程为Am→α-Fe(Co)+Am′→α-Fe(Co)+Cr_2Ni_3+Fe_3Ni_2+Cr_2Zr+未知相。当退火温度Ti玻璃转变温度Tg时,由于结构弛豫、内应力的释放,合金的饱和磁化强度Ms有所提高;当晶化起始温度TxTi第一晶化峰值温度Tp1时,由于铁磁性α-Fe(Co)相的析出,Ms显著提升;当TiTp1时,由于晶粒长大和第二相的析出,Ms急剧恶化,565℃退火能够获得最好磁性能(Ms=106.8A·m~2·kg~(-1))。490℃和565℃退火后薄带表面的AFM观察表明,AFM图片所呈现的颗粒尺寸要比用Scherrer法测得的α-Fe(Co)纳米晶尺寸大得多,这是典型的包裹晶粒现象。  相似文献   

5.
孙辉  武会宾  张游游  袁睿  张志慧 《材料工程》2022,50(11):127-134
利用XRD,SEM/EDS,EBSD,电化学测试等表征手段研究Cr含量对Cr_(x)MnFeNi(x=0.8,1.0,1.2,1.5)高熵合金微观组织与耐蚀性能的影响。结果表明:Cr_(0.8)MnFeNi高熵合金为单相FCC结构,Cr_(x)MnFeNi(x=1.0,1.2,1.5)高熵合金为FCC+BCC双相结构,且BCC相比例随着Cr含量升高而增加。在0.5 mol/L H_(2)SO_(4)溶液中,高熵合金的耐蚀性能随着Cr含量降低而增强,其中,Cr_(0.8)MnFeNi单相高熵合金的耐蚀性能最好,这是因为Cr_(0.8)MnFeNi高熵合金的成分更为均匀。此外,Cr_(x)MnFeNi高熵合金在0.5 mol/L H_(2)SO_(4)溶液中均具有宽泛的钝化区域以及明显的伪钝化区域,表明合金在耐蚀性能上具有较大的研究价值和开发潜力。  相似文献   

6.
为了获得兼具高强度与高延展性的Al-Co-Cr-Fe-Ni系高熵合金,采用电弧熔炼的方法成功制备了Al1.2CoxCrFeNi(x=1,1.6,2.2,2.8)高熵合金并对其微观组织和力学性能进行了系统研究。结果表明:在Al1.2CoxCrFeNi合金体系中,Co元素具有诱导BCC相向FCC相转变的能力,随着Co含量的原子比例从1增加至2.8,FCC相的体积分数从0%增加到59%,BCC相的体积分数从100%降低至41%。压缩实验的结果表明,Co元素的加入对于提高Al1.2CoxCrFeNi高熵合金的塑性有重要作用,但对高熵合金的强度无明显影响。随着Co含量的增加,Al1.2CoxCrFeNi高熵合金的断裂应变从16.9%增加到30%,极限抗压强度由2128 MPa降低至1913 MPa,其中最大抗压强度为2361 MPa,平均硬度由513.7HV降低至323.4HV。Co含量的增加促使了合金的原子半径差的降低,...  相似文献   

7.
采用X射线衍射仪、光学显微镜、扫描电镜和透射电镜对TiCu_(0.5)Al_(0.5)Cr_(0.2)Ni_(0.1)高熵合金的相组成、相形貌、元素分布进行了系统研究,利用显微维氏硬度计测量了合金在室温下的硬度,通过电子万能试验机对合金进行了室温压缩试验,并在实验室模拟环境下进行合金防腐防污性能研究。结果表明:TiCu_(0.5)Al_(0.5)Cr_(0.2)Ni_(0.1)高熵合金主要由六方晶系Ti(CuAl)_2组成,大块状Ti(CuAl)_2相间存在条状组织,条状为AlCu_2Ti相,条间为CuTi_2相。树枝晶(DR)内Al元素和Cr元素含量较高,枝晶间(ID)Ti元素含量高于枝晶区域,而Ni元素和Cu元素整体分布较均匀。枝晶间(ID)显微硬度平均值为772HV,树枝晶DR显微硬度为690HV,枝晶间(ID)显微硬度高于树枝晶(DR)的;室温压缩强度为1 091 MPa。合金耐腐蚀性能良好,60℃人造海水中合金腐蚀失重量仅为-0.000 05 g,并具备一定的防污功能。  相似文献   

8.
利用维氏硬度计(HV)、X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电镜(TEM),研究了90%冷轧Al0.3CoCrFeNi高熵合金在900℃退火过程中的微观组织和织构演变规律。结果表明:退火0.5h合金发生完全再结晶,退火孪晶形成于再结晶面心立方(FCC)晶粒内;经退火1h后,富集Al-Ni原子的有序体心立方(BCC)相优先于FCC相的晶界处形核,且FCC相和BCC相均随着退火时间(1h~10h)的延长而发生晶粒长大。再结晶FCC相的织构组分主要为强{123},〈634〉S织构和强α-{110}纤维织构,{001}〈100〉立方织构随着退火时间的延长也逐渐转化为强织构;再结晶过程的进行使无择优取向的初始BCC晶核选择性长大,{111}〈112〉织构从而演变为强BCC相织构。  相似文献   

9.
用真空电弧炉制备了铸态高熵合金FeCrCoNiMn(HEA),将高熵合金在700℃铝熔体中进行了不同时间(0~1h)的保温热浸实验,分析了HEA-Al固/液界面反应的组织演变及形成机理。结果表明,高熵合金在铝熔体中热浸反应时,其界面附近可形成由Al_(86)Cr_(13.5)Fe_(6.5)、Al_(86)Mn_(14)、Al_3Ni和Al_9Co_2多种富铝金属间化合物组成的反应层、富铝块体相以及含Fe和Ni的富铝层状析出相和网状结构组织。热浸初期,界面反应层的形成和长大主要受高熵合金表面元素的溶解和脱嵌过程控制,此时反应层和块体相的形成和长大主要位于铝溶体一侧且反应层界面迁移速率较快;形成反应层后,反应层厚度随热浸反应时间的延长而增大,当反应时间t10min后,反应层厚度基本维持在20μm左右不再变化,此时反应层界面迁移速率有所变缓。  相似文献   

10.
相对于传统的二元合金,多主元高熵合金(HEAs)通常由五种及以上元素组成,呈现出结构晶格畸变、原子缓慢扩散及组织高稳定性等特征。高熵合金作为材料研究领域的一种新型合金,极易获得热稳定性很高的固溶相和纳米结构,甚至可得到非晶相,其综合性能明显优于传统合金,因此,高熵合金具有很高的学术研究价值和工业应用潜力。材料的成分和组织决定了材料最终的性能,多主元成分设计使得高熵合金相组成较为复杂,如何通过理论计算相形成规律,从而准确地预测出给定成分高熵合金的相组成,对高熵合金材料设计至关重要。研究发现混合焓H_(mix)可对高熵合金中的相组成进行确定,但简单的混合焓参数已经不能满足多主元高熵合金相预测的准确性,更多参数在高熵合金发展进程中被提出。研究发现,原子半径差δ_r及熵/焓Ω(T_A)等参数可预测出高熵合金中的固溶体(SS)相和金属间化合物(IM)相,却无法预测固溶体的具体类型。然而,K_1~(Cr)(T_A)参数的补充提高了给定热处理温度下相预测的准确性,且热处理后SS相形成域的参数值变小,这表明IM相在热处理后形成了另一种相且影响了参数值;价电子浓度VEC判据可预测FCC、BCC型高熵合金的固溶体类型,但不适用于所有的高熵合金;电负性差ΔX可对大部分高熵合金(除含大量Al之外)的拓扑闭合相稳定性进行预测,且ΔX0.133时可预测出高熵合金中有拓朴闭合稳定相存在。为了更全面准确地预测高熵合金相组成,有学者提出了较为完善的CALPHAD计算机热力学相图预测模型,由于FCC比BCC结构的动力学效应大,采用CALPHAD方法预测FCC相组成精确性较差,但对BCC相的预测十分精确。而分子轨道理论仅用一个参数Md(合金化过渡金属d轨道的平均能级),就可以预测以镍基、钴基和铁基合金为基础高熵合金中固溶体与过渡金属所形成的TCP/GCP相。本文在传统合金相形成规律的基础上,通过对现有高熵合金相形成理论进行研究,阐明了高熵合金的相结构模型;总结出固溶体与金属间化合物,面心立方FCC、体心立方BCC和密排六方HCP结构的高熵合金,以及固溶体与第二相形成规律的理论预测模型;分析所有理论预测模型的优缺点,最终总结出一套较为完整的高熵合金相组成的预测流程,有利于初学者进行高熵合金的成分设计。  相似文献   

11.
采用低能球磨-热压烧结制备了(FeNiCoCr)100-x Al x (x=0、5)高熵合金,并对其进行时效处理,研究了合金的组织结构与力学性能。结果表明:烧结态及时效态合金的微观组织均由FCC相和少量BCC相构成,其中FCC相中均存在孪晶,且未添加Al的合金中孪晶比例相对较高;添加Al的合金中BCC相较高,且时效处理后出现了大量小角度晶界。时效态FeNiCoCr合金具有最佳的综合性能,其压缩真屈服强度达545 MPa,弯曲强度和断裂韧性分别为1342±20 MPa和32.5±2.0 MPa·m1/2,优异的力学性能归因于FCC相中退火孪晶的形成以及BCC相的析出。  相似文献   

12.
王虎  王智慧 《材料导报》2018,32(4):589-592, 597
利用等离子熔覆法在Q235基体上制备了Al_xCoCrFeNi(x=1、1.5,x为摩尔分数)高熵合金,对熔覆层的化学成分、相结构、微观组织和显微硬度进行了研究。结果表明:熔覆态高熵合金具有简单的固溶体结构,微观组织为树枝晶,Al含量从x=1增加到x=1.5时,物相组成由FCC+BCC两相转变为单一的BCC相;当x=1.5时,枝晶间有纳米级颗粒析出;Al_(1.5)CoCrFeNi熔覆层与基体呈现良好的冶金结合,界面附近的热影响区由于珠光体脱碳分解而形成了约为80μm宽的铁素体带;随着Al含量的增加,熔覆层的显微硬度从x=1时的478HV增加到x=1.5时的530HV。  相似文献   

13.
采用气雾化法制备预合金粉末,通过选区激光熔化(selective laser melting,SLM)制备Al_(x)CoCrFeNi(x=0.3,0.5,0.7,1.0)高熵合金。通过X射线衍射仪、扫描电镜以及纳米压痕实验,综合分析Al_(x)CoCrFeNi的物相、微观组织、硬度、杨氏模量及蠕变曲线,探讨Al含量对Al_(x)CoCrFeNi显微组织及纳米压痕的影响。结果表明:Al含量对物相组织有显著影响,其中Al_(0.3)CoCrFeNi与Al_(0.5)CoCrFeNi为FCC结构,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi为BCC/B2结构。Al_(0.3)CoCrFeNi和Al_(0.5)CoCrFeNi主要由等轴晶组成,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi主要由柱状晶组成。随Al含量增加,孔隙及裂纹等缺陷增加。在Al_(0.3)CoCrFeNi和Al_(0.5)CoCrFeNi中没有观察到明显的熔池形貌。随Al含量增加,样品残余应力增加。随Al含量增加,硬度增加,由Al_(0.3)CoCrFeNi的447HV增加至Al_(1.0)CoCrFeNi的567HV。Al_(0.3)CoCrFeNi杨氏模量约为273 GPa,Al_(0.5)CoCrFeNi约为233 GPa,Al_(0.7)CoCrFeNi和Al_(1.0)CoCrFeNi杨氏模量相近,分别为240 GPa和242 GPa,硬度与杨氏模量的变化主要与组织及物相有关。与传统蠕变曲线不同,Al_(x)CoCrFeNi的纳米压痕蠕变曲线只包括瞬时蠕变和稳态蠕变两个阶段,其蠕变机制主要为位错蠕变,其中Al_(0.7)CoCrFeNi具有最好的抗蠕变性能。Al_(0.3)CoCrFeNi具有最好的打印成形性,其屈服强度为702 MPa,伸长率为27.5%。  相似文献   

14.
高熵合金具有许多优异性能,目前对其研究还不够深入。利用真空电弧熔炼炉制备了Cu_xAlFeNiCrTi(x=0,0.5,1.0)高熵合金,并通过X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计和磨损试验对该高熵合金的微观组织及其性能进行了一系列测试,探究不同含量的Cu元素对合金性能的影响。结果表明:合金组织为树枝晶,主要是由体心立方(BCC)相和面心立方(FCC)相组成;随着Cu元素含量的增加,FCC相含量也在增加,合金的硬度降低;随Cu元素含量的增加,合金的摩擦系数减小,磨损失重和磨损体积增大,即合金耐磨性降低。  相似文献   

15.
高熵合金自问世以来,因其性能独特很快就引起了广大学者的兴趣。对高熵合金的定义,现在大家普遍认为的是由5种及5种以上的主要元素以等摩尔比或近似等摩尔比构成,且每种元素占总成分的5%~35%。对配置熵、混合焓、原子半径差、价电子浓度等物相参数进行计算,并结合CALPHAD相图模拟和第一性原理密度泛函理论(DFT)以及AIMD模拟,可用来初步预测高熵合金的相结构。目前,主要有面心立方(FCC)、体心立方(BCC)和密排六方结构(HCP)3大类固溶体高熵合金,其中HCP高熵合金鲜见,主要为稀土元素类和贵金属元素类HCP高熵合金。近几年研究发现FCC高熵合金通过特殊的处理方式(如高压)也可转变成HCP高熵合金。对HCP高熵合金的结构、相形成规律以及性能进行了综述,并讨论了其未来发展趋势。  相似文献   

16.
李刚  张井波  张明  刘云婷  安亚君 《材料导报》2016,30(18):104-107, 112
将铝粉和高碳铬铁粉末按80∶20原子比混合压制成坯,并对压坯进行激光诱导自蔓延烧结,利用金相显微镜、X射线衍射仪等设备,表征烧结合金显微组织及物相结构;采用硬度计、磨粒磨损机及电化学腐蚀仪等,表征烧结合金宏观性能。研究合金表层区、中层区和底层区组织及性能变化规律。结果表明:烧结合金物相主要有α-Al、Fe_2AlCr、Al_(13)Cr_2、Al_(13)Fe_4及Al_2O_3等,且烧结合金中层区富Al相Al_(13)Cr_2和Al_(13)Fe_4的含量最多,α-Al相含量最少。烧结合金中层区显微组织最细小均匀;硬度值最高,为817.5HV;磨损率最低,为0.08mg/mm~2;耐蚀性能最好,钝化电流最小,为115.8μA/cm~2。  相似文献   

17.
采用非自耗电弧熔炼炉制备了Al_xFeCrCoCuV(x=0,0.5,1.0)多组元高熵合金。用XRD,SEM,EDS和DSC技术探究了合金的微观组织,并测试了其硬度及耐磨性能。研究表明:随着Al的加入,Al_(0.5)FeCrCoCuV合金和Al_(1.0)FeCrCoCuV合金由FeCrCoCuV合金单一的BCC相变为由枝晶BCC和晶间FCC共同组成的双相组织;Al_(1.0)FeCrCoCuV合金的硬度大于Al_(0.5)FeCrCoCuV合金。合金的摩擦磨损测试主要以黏着磨损为主,合金的耐磨性能与硬度成正比。3种合金的摩擦因数都是随着时间的增加而减小,主要原因是随着摩擦时间的增加,合金表面生成了一层氧化物提高了合金的耐磨性能。  相似文献   

18.
高熵合金(HEA)由于其多主元和高混合熵的特点,具有一些传统合金难以实现的优异性能,在表面技术领域具有很大的应用前景。本研究采用基于铝热反应/喷射沉积的高熵合金熔覆涂层技术,在45钢表面制备了FeCrNiCuAlSn_(0.5)高熵合金涂层,并采用XRD、SEM和EDS分析了FeCrNiCuAlSn_(0.5)高熵合金涂层的相结构、显微组织及元素分布,利用维氏硬度仪、顶断试验机和球盘式摩擦计测定了涂层的硬度、结合强度及摩擦磨损性能。结果表明,喷射涂层主要由FCC相和BCC相组成,可能含有少量的Ni_3Sn_2相。涂层组织为树枝晶,二次枝晶臂间距大约为(5.25±2.75)μm,平均冷却速度达到2.37×10~4K/s。涂层与基体交界处未出现气孔、夹杂等缺陷,实现了良好的冶金结合,涂层与基体的平均结合强度为(412.8±16) MPa。涂层的平均显微硬度值为(539±10)HV,摩擦系数为0.50,磨损率为(7.24±0.52)×10~(-6)mm~3/(N·m);而45钢基体的摩擦系数为0.75,磨损率为(1.45±0.35)×10~(-5)mm~3/(N·m),表现出比基体更为优异的耐磨性能。  相似文献   

19.
依据多主元高熵合金的设计理念,采用真空电弧炉熔炼等摩尔比多主元高熵合金AlFeCuCoNiCr,研究合金的组织结构。研究发现:AlFeCuCoNiCr合金的铸态组织是典型的树枝晶,并有纳米析出相和非晶相形成;合金存在严重的成分偏析现象,铜偏聚于枝晶间;合金形成了简单的面心立方+体心立方(FCC+BCC)结构和少量金属间化合物。  相似文献   

20.
用快淬工艺制备了La-Mg-Ni-Cu系Mg_2Ni型Mg_(24)Ni_(10)Cu_2和(Mg_(24)Ni_(10)Cu_2)_(85)La_(15)合金,用XRD及HRTEM分析了铸态及快淬态合金的结构;用全自动Sieverts设备测试了合金的气态吸放氢动力学;用差热分析仪测试了不同加热速率下合金的放氢DSC曲线,并用Kissinger方程计算了合金放氢激活能。结果表明:不含La的铸态合金具有Mg_2Ni单相结构,添加La的合金除含有Mg_2Ni相外,还含有第二相La_2Mg_(17)和LaMg_3相。快淬态合金具有纳米晶、非晶结构。La的加入显著地提高了合金在真空快淬过程中的非晶形成能力。真空快淬后合金的气态吸放氢动力学得到明显改善,这主要归因于纳米晶结构的形成和合金激活能的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号