首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Processing and mechanical properties of autogenous titanium implant materials   总被引:19,自引:0,他引:19  
Pure titanium and some of its alloys are currently considered as the most attractive metallic materials for biomedical applications due to their excellent mechanical properties, corrosion resistance, and biocompatibility. It has been demonstrated that titanium and titanium alloys are well accepted by human tissues as compared to other metals such as SUS316L stainless steel and Co–Cr–Mo type alloy. In the present study, highly porous titanium foams with porosities 80% are produced by using a novel powder metallurgical process, which includes the adding of the selected spacers into the starting powders. The optimal process parameters are investigated. The porous titanium foams are characterized by using optical microscopy and scanning electron microscopy. The distribution of the pore size is measured by quantitative image analyses. The mechanical properties are investigated by compressive tests. This open-cellular titanium foams, with the pore size of 200–500 m are expected to be a very promising biomaterial candidates for bone implants because its porous structure permits the ingrowths of new-bone tissues and the transport of body fluids.  相似文献   

3.
4.
By means of three-dimensional crystallite orientation distribution function (CODF) analysis, the relationship between texture control processes and mechanical properties anisotropy in titanium sheet has been investigated. The formation and transition of cold-rolling texture, recrystallization texture and phase transformation texture are also discussed. The results show that, after being cold rolled unidirectionally and annealed, titanium sheet exhibits a strong anisotropy of mechanical properties due to the pyramidal textures (2 1 1 5) [0 1 1 ] and (1 0 1 3) [1 2 1 0]. After a cyclic phase transformation process coupled with cold rolling and annealing treatment, the recrystallization texture component (1 0 1 3) [1 2 1 0] is suppressed and [h k i l] 9∥ND transformation fibre texture (where ND is the sheet normal direction) are developed, which produce a well improved mechanical anisotropy. The cross-rolling process can create a basal type texture (0 0 0 2) 〈u v t w〉 or a near basal type texture, which leads to low level planar mechanical properties anisotropy but to relatively high normal plastic anisotropy (R value). This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Microstructure and fracture behavior of brazed joint between commercially pure titanium and low carbon steel using silver (Ag–34Cu–2Ti) and copper (Cu–12Mn–2Ni) based alloys have been characterized to determine the effect of brazing parameters and chemical composition on the strength of brazed joints. It is found that the shear strength of brazed joints strongly depends on the lap width. Furthermore, the fracture path and the value of shear strength significantly changed with the type of filler alloy. The two filler metals showed metallurgical interaction with steel and titanium forming different kinds of intermetallic compounds such as CuTi, Cu2Ti, and FeTi with silver based filler and Ti2Cu, FeTi and TiCuFe with copper based filler.  相似文献   

6.
High nitrogen titanium alloy with the chemical composition of Ti–4%Cr–0.6%N was produced by solution nitriding to nitrogen-free Ti–4%Cr alloy, and then its microstructure was controlled to have fine (α + β) dual phase structure by aging treatment to improve the ductility. As solution-nitrided specimen has a platelet hcp-martensitic structure (α′) and is characterized by hard but brittle nature that has been produced by solid solution of 0.6% of nitrogen. On the following aging treatment, fine β phase formed along the original plate boundaries, resulting in a fine (α + β) dual phase microstructure. X-ray and EELS analyses revealed that nitrogen is greatly concentrated in the tempered α′ phase. Although the hardness of as-quenched material gradually decreases during the aging treatment with increasing volume fraction of β, the hardness can be kept much higher than that of the aged Ti–4%Cr alloy without nitrogen. As a result of tensile testing, it was found that the aged Ti–4%Cr–0.6%N alloy has high tensile strength over 1 GPa with moderate ductility.  相似文献   

7.
8.
Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.  相似文献   

9.
Abstract

Investment castings have been produced in γ-TiAl of composition Ti–48Al–2Nb–2Mn (at.-%) using induction skull melting. The microstructures of the bars were studied in the as cast condition and after hipping and heat treatment. Heat treatment at 1200°C led to a near γ structure whereas treatment at 1350°C resulted in a nearly lamellar structure. However, a duplex structure was retained after treatment at 1300°C. Tensile, fracture toughness, and fatigue crack growth resistance tests have been carried out on specimens machined from different sized bars. The tensile properties increased with decreasing bar diameter but, conversely, both the fracture toughness and fatigue crack growth resistance improved as the bar diameter increased. It has been found that the fracture toughness and fatigue crack growth resistance in nearly lamellar structures were better than those in near γ structures, whereas duplex structures had intermediate properties. However, the tensile properties of duplex structures were better than both near γ and nearly α2 /γ lamellar structures, with optimum values at 35 ± 5% α2 /γ lamellae of ~400 MPa 0·2% proof strength, 470 MPa tensile strength, and 0·9% elongation.  相似文献   

10.
11.
12.
The effect of volume fraction of the β-phase on the mechanical and superplastic properties of ultrafine-grained titanium alloys with grain size d of ~0.2 µm was investigated by transmission and scanning electron microscopy, X-ray diffraction analysis, and tensile test experiments. The ultrafine-grained structure of the materials was formed by the multi-directional pressing technique. The structure in question is shown to improve the mechanical properties by 30–50 % and to lower down to 823 K, the temperature at which superplastic flow starts as compared to coarse-grained analogs, no matter what the phase composition and concentration of the alloying elements used. The reduced temperature is attributable to the activation of diffusion-controlled grain boundary sliding in the case of nonequilibrium interfaces of materials produced by severe plastic deformation. The fraction of the β-phase and its precipitation pattern are found to have significant influence on the temperature range in which superplastic flow occurs and on the maximum elongation to failure. A near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloy with a large fraction of the β-phase (>34 %) under superplastic conditions exhibits record-breaking strains (>1300 %) that do not cause fracture of the material and extremely low flow stresses. This is associated with the activation of the grain boundary sliding due to an increase in the diffusivity along the phase boundaries in a case of microduplex structure.  相似文献   

13.
This review presents an investigation on effects of the processing conditions on the microstructural evolution and mechanical properties of commercial pure titanium processed by Equal Channel Angular Pressing (ECAP). An overview of ECAP processing is presented. A discussion on the microstructure evolution of ECAPed titanium emphasising effects of the ECAP-route type, processing temperature, number of ECAP passes, and mechanical/thermal treatments is presented. Moreover, the variations of the mechanical properties (yield strength, tensile strength, and ductility) of titanium as functions of the grain size are reported for the different conditions of ECAP processing. In addition, the best estimates of the Hall–Petch parameters for titanium processed by ECAP, ECAP followed by mechanical and/or thermal annealing are reported.  相似文献   

14.
The structure and mechanical properties of Cu10 wt% Al base alloys with 0–2.5 wt% Ti additions were investigated using transmission electron microscopy, optical microscopy and tensile tests. Addition of titanium has a decreasing effect on the grain size after quenching fromα + β region and causes significant strengthening of alloys. Alloy containing 1 wt%Ti quenched from 900° C shows mixture ofα, retainedβ (DO3), disorderedβ′ (3R) and orderedβ′ 1 (18R) martensites. Alloy with 2.5 wt% Ti addition after quenching containsα, retainedβ (DO3), ordered T1 phase of L21 superlattice and orderedβ′ 1 martensite with either R18 or L10 structure indicating different stacking of ordered planes as the effect of titanium addition.  相似文献   

15.
This study was to evaluate wettability, cell response, and osseointegration of nanotubular titanium (Ti) surface by anodic oxidation. Commercially pure Ti discs were treated by polishing, sandblasting, and anodizing. These surfaces were characterized by scanning electron microscopy and contact angle measurement. MC3T3-E1 osteoblast cell was used to evaluate cell response in vitro. The cell morphology, cell viability, and alkaline phosphatase (ALP) specific activity were assessed. The Ti implants of 2.0 mm diameter and 5.0 mm long treated by anodizing and sandblasting/anodizing were inserted into the tibia of rats. After 3 weeks, the histology of the Ti–bone interface was examined. SEM observations showed that the anodizing and sandblasting/anodizing created the nanotubular surface and graded nanotubular-micro-roughened surfaces, respectively. The anodizing and sandblasting/anodizing significantly improved the hydrophilicity of Ti. The significant greatest cell spreading and ALP specific activity were observed on the graded nanotubular-micro-roughened surfaces treated by sandblasting/anodizing. The in vivo study shows that newly formed bone was intimately in contact with the nanotubular surfaces without adverse immune response. This study has suggested that the graded nanotubular-micro-roughened surface of Ti treated with sandblasting/anodizing is very promising in implantology due to improved hydrophilicity, favorable cell response, and excellent osseointegration.  相似文献   

16.
Titanium oxide thin films were deposited by radiofrequency reactive sputtering in Ar-O2 atmosphere on silicon (100) wafers and titanium alloy plates (Ti-6Al-4V). Thin films structural characterization was carried out by grazing incidence X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopies. Chemical composition was checked by X-ray wavelength dispersive spectroscopy. Mechanical assessment was achieved by nano-indentation and nano-scratch measurements. The films deposited on silicon substrates are over-stoechiometric in oxygen, with an oxygen to titanium ratio of about 2.2. The growth of anatase and rutile phases was promoted by ranging the total and oxygen partial pressures between 0.17-1.47 Pa and 35-85%. The growth rate of films, determined by grazing incidence X-ray reflectivity, was ranging from 35 to 55 nm/h. The rutile single-phased films possess a hardness of about 2.5 times higher and a lower friction coefficient than the anatase films. The films which contain anatase possess a high surface root-mean-square roughness and a reduced elastic modulus of around 120 GPa close to reduced elastic moduli of hydroxyapatite bioceramic and titanium alloy. So the anatase film could be the best candidate as a titanium oxide intermediate layer between hydroxyapatite and titanium alloy in the field of biomedical implants.  相似文献   

17.
The present work studied the effect of space holders on pore structure and mechanical properties in porous titanium. Four types of space holders (sodium chloride, starch, and urea with different size and morphology) were utilized to fabricate porous titanium. The space holders played a key role in the pore structure as confirmed by microstructural observations and three-dimensional computed tomography technique. Mechanical properties of each sample were investigated and discussed on the basis of the tomography results and finite element method. It is concluded that the porosity determines the elastic modulus regardless of the type and morphology of space holders, whereas both porosity and type of space holder affected strength.  相似文献   

18.
The present investigation is an attempt at correlating the crystallographic orientation and mechanical properties of hexagonal commercially pure titanium (cp-titanium). Annealed cp-titanium sheets are subjected to tensile deformation along the rolling direction, along 45° to the rolling direction and along 90° to the rolling direction respectively. Crystallographic textures and mechanical properties of these cp-titanium samples are investigated in the present study. The hardness of different grains/orientations is estimated through nanoindentation, grain average misorientation, orientation estimated elastic stiffness and Taylor factor measurements. It is observed that the hardness of the grains close to basal orientation is higher compared to non-basal orientations. It is further observed that the estimated bulk mechanical properties of cp-titanium have a direct relationship with the volume fraction of basal grains/orientations.  相似文献   

19.
The goal of this work is the evaluation of nanoscaled reinforcements; in particular nanodiamonds (NDs) and carbon nanotubes (CNTs) on properties of titanium matrix composites (TiMMCs). By using nano sized materials as reinforcement in TiMMCs, superior mechanical and physical properties can be expected. Additionally, titanium powder metallurgy (P/M) offers the possibility of changing the reinforcement content in the matrix within a very wide range. In this work, TiMMCs have been produced from titanium powder (Grade 4). The manufacturing of the composites was done by hot pressing, followed by the characterisation of the TiMMCs. The Archimedes density, hardness and oxygen content of the specimens in addition to the mechanical properties were compared and reported in this work. Moreover, XRD analysis and SEM observations revealed in situ formed titanium carbide (TiC) phase after hot pressing in TiMMCs reinforced with NDs and CNTs, at 900 °C and 1100 °C respectively. The strengthening effect of NDs was more significant since its distribution was more homogeneous in the matrix.  相似文献   

20.
K. Chu  Y.H. Lu  Y.G. Shen 《Thin solid films》2008,516(16):5313-5317
Nano-multilayers represent a new class of engineering materials that are made up of alternating nanometer scale layers of two different components. In the present work a titanium (Ti) monolayer was combined with titanium diboride (TiB2) to form a Ti/TiB2 nano-multilayer. Designed experimental parameters enabled an evaluation of the effects of direct current bias voltage (Ub) and bilayer thickness (Λ) during multilayer deposition on the mechanical properties of reactively sputtered Ti/TiB2 multilayer films. Their nanostructures and mechanical properties were characterized and analyzed using X-ray photoelectron spectroscopy (XPS), low-angle and high-angle X-ray diffraction (XRD), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), and microindentation measurements. Under the optimal bias voltage of Ub = − 60 V, it was found that Λ (varied from 1.1 to 9.8 nm) was the most important factor which dominated the nanostructure and hardness. The hardness values obtained varied from 12 GPa for Ti and 15 GPa for TiB2 monolayers, up to 33 GPa for the hardest Ti/TiB2 multilayer at Λ = 1.9 nm. The observed hardness enhancement correlated to the layer thickness, followed a relation similar to the Hall-Petch strengthening dependence, with a generalized power of ∼ 0.6. In addition, the structural barriers between two materials (hcp Ti/amorphous TiB2) and stress relaxation at interfaces within multilayer films resulted in a reduction of crack propagation and high-hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号