首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
对36个Q460高强钢试件进行单调拉伸与循环拉伸下的力学性能试验,探讨开孔数量、开孔位置和加载制度对Q460高强钢试件破坏特征、极限抗拉强度、应力循环特征和耗能能力的影响规律.结果表明:孔洞对Q460高强钢试件的力学性能具有显著影响;开孔试件在孔洞周围出现明显的应力集中现象;未开孔试件的应力-应变曲线更为饱满,且未开孔试件的耗能能力和断后伸长率远大于开孔试件;相较于沿试件长轴方向的孔洞,沿试件短轴方向的孔洞对试件力学性能的影响更为显著;对于相同开孔数量和开孔位置的试件,其耗能能力随加载应变幅值增量的增大而减小.  相似文献   

2.
谢彩霞  李海锋  吕琨德  李霞 《建筑结构》2020,50(2):107-112,137
对33个Q235钢材性试件进行单向拉伸与循环拉伸加载下力学性能试验,对比试件的应力-应变曲线、荷载-位移曲线、骨架曲线,探讨试件在不同加载模式下的破坏机理、延性特征和滞回性能。试验结果表明,Q235钢材应力-应变曲线饱满,表现出良好的延性特征;开孔试件在孔洞周围应力集中现象明显;对比无开孔试件,开孔试件的耗能能力、抗拉强度和延性大幅度降低;试件开孔个数对试验结果有一定影响,开两个孔试件的延性及抗拉强度优于开一个孔的试件;试件耗能能力与加载模式的应变幅值和滞回圈数有关,试件耗能能力随应变幅值和滞回圈数的增大而增加。  相似文献   

3.
王燕    李珂皓    杨怡亭   《建筑科学与工程学报》2022,(5):122-131
为深入研究应变时效对Q460C高强钢基本力学性能影响,建立考虑应变时效影响Q460C高强钢应力-应变本构关系曲线,对经应变时效影响的Q460C高强钢进行了试验研究,分析了Q460C高强钢经应变时效后基本力学性能指标,采用修正Ramberg-Osgood模型对试验结果进行拟合。结果表明:Q460C钢经预应变后具有显著的应变硬化现象,屈服强度得到大幅提高,极限应变和断裂应变显著降低,屈强比接近1.0,结构发生脆性断裂的可能性增加; Q460C钢经时效后产生时效硬化现象,试件在各时效之间应力-应变曲线差别较小,经时效硬化后钢材的硬化程度低于应变硬化; 采用修正的Ramberg-Osgood模型能够较为准确地拟合经预应变及时效影响后高强钢的应力-应变曲线,拟合结果与试验结果具有较好的一致性; 研究内容可为相关工程应用和理论分析提供参考。  相似文献   

4.
高强钢组合偏心支撑钢框架是一种耗能梁段采用屈服点较低的钢材(Q235,Q345),其他构件采用高强度钢材(Q460,Q690)的新型结构体系。为研究其抗震性能,对4个1∶2缩尺的单层单跨高强钢组合K形偏心支撑钢框架平面试件进行了单调加载试验和循环加载试验。试验以耗能梁段长度为变化参数,研究试件的破坏模式和主要抗震性能指标。研究结果表明,高强钢组合K形偏心支撑钢框架的承载力高、延性较好、耗能能力强;剪切屈服型试件的耗能能力好于弯曲屈服型;单调加载的破坏位移远比循环加载的大,前者的承载力高于后者,但相同位移时前者的荷载低于后者;循环荷载作用下试件破坏主要集中在第一道抗震防线耗能梁段上,此时高强钢构件基本处于弹性工作状态,残余变形较小;高强钢组合K形偏心支撑钢框架是一种有利于震后修复的双重抗侧力体系。  相似文献   

5.
为了研究高强Q960钢在火灾后的力学性能,对过火温度为300~900℃的高强Q960钢试件进行了稳态拉伸试验,得到其在自然冷却和浸水冷却条件下的应力-应变曲线、弹性模量、屈服强度和极限强度.结果表明:600℃是高强Q960钢强度发生明显变化的临界温度,将试验结果与普通Q235钢、Q345钢和高强Q460钢、Q690钢、S960钢进行比较,发现不同种类钢材经历高温后的力学性能退化程度并不相同;根据试验结果,建立了高强Q960钢高温后力学性能折减系数随温度变化的拟合公式,拟合结果与试验结果吻合较好.  相似文献   

6.
Q460高强钢焊接箱形压弯构件极限承载力试验研究   总被引:6,自引:0,他引:6  
为研究Q460高强钢中厚板焊接箱形压弯构件的整体失稳极限承载力,采用11mm厚国产Q460高强钢中厚板制作7个焊接箱形压弯试件,试件截面宽厚比分别为18、12、8,长细比分别为35、55、80。试验内容包括:Q460低合金高强钢的材性试验,三种焊接截面残余应力测试,各试件初始几何缺陷测量及极限承载力试验,从而进行了面内整体失稳压弯构件的极限承载力试验研究;并且把试验结果与我国现行钢结构设计规范计算值相比较。试验研究结果表明:Q460低合金高强钢材性具有高强度,塑性性能良好等特点;Q460高强钢焊接箱形截面残余应力分布形式与普通钢材箱形焊接截面分布基本相同,但是残余应力比降低;压弯构件极限承载力试验结果明显高于现行钢结构规范设计公式计算值,所以应对Q460高强钢焊接箱形压弯构件进行近一步参数分析研究,并得出其实用设计方法。  相似文献   

7.
高强Q460钢高温冷却后力学性能研究   总被引:1,自引:0,他引:1  
为了评估高强Q460钢高温冷却后的力学性能,采用电炉对高强Q460钢进行加热升温,再采用自然冷却或浸水冷却方式冷却,然后进行拉伸试验,获得了高温冷却后高强Q460钢的应力-应变关系曲线、屈服强度、极限强度、弹性模量和极限伸长率.将高温冷却后高强Q460钢和普通Q235钢的屈服强度、极限强度和弹性模量进行对比.结果表明:高温后高强Q460钢力学性能与常温下力学性能相比有所变化,尤其是当温度超过700℃时,变化基本较大;700℃后,不同冷却方式对高强Q460钢极限强度和极限伸长率影响较大,浸水冷却后钢材的极限强度明显高于自然冷却后钢材的极限强度,而浸水冷却后钢材的极限伸长率则明显低于自然冷却后钢材的极限伸长率;高强Q460钢弹性模量和屈服强度受冷却方式的影响较小;高温冷却后高强Q460钢与普通Q235钢屈服强度、极限强度和弹性模量折减系数存在差异.  相似文献   

8.
Q460高强钢单调与反复加载性能试验研究   总被引:2,自引:0,他引:2  
通过对Q460高强钢进行单向拉伸与反复加载下材料性能试验,得到了各试件单调拉伸和反复加载下的应力-应变关系曲线,以及反复加载下的骨架曲线,并将试验结果与文献研究结果进行了对比。试验结果表明:单向拉伸材性试验中,11 mm厚Q460C高强钢板的平均断后伸长率为23.7%,屈强比为0.847; 21 mm厚钢板的平均断后伸长率为30.4%,屈强比为0.792;Q460钢的循环硬化程度比Q345钢明显减弱,主要原因是随着钢材强度的提高,钢材的屈强比增大,钢材的应变强化效应减小。根据钢材反复加载的滞回曲线,提出了Q460高强钢材的应力 应变滞回模型,用该模型计算得到的关系曲线与试验曲线对比,两者吻合较好。  相似文献   

9.
《钢结构》2017,(9):13-16
随着输电线路电压等级的不断提高,杆塔结构荷载越来越大,高强钢以其强度高等特点在特高压输电钢管塔中得到了较为广泛的应用。然而,目前国内对Q460高强钢管承载力特性的相关研究较为匮乏,更没有涉及到镀锌Q460高强钢管。针对12组不镀锌Q460高强钢管及6组镀锌Q460高强钢管试件开展轴压试验,研究Q460高强钢管的承载力及变形特性,分析镀锌对高强钢承载力特性的影响规律。结果表明:Q460高强钢管的承载力比我国相关规范中对应设计值高20%以上;镀锌对钢管的稳定承载力有明显的提高作用。  相似文献   

10.
将高强角钢放置在实际铁塔结构中,选取平面三角形桁架1∶1模型,采用不同端部连接形式,两种长细比,对Q460高强角钢进行极限承载力试验研究。根据试验结果分析Q460等边角钢的破坏形态、极限承载力、与连接腹杆的工作机理等指标。研究表明:子结构试验能真实反映构件在结构中的受力性能和实际端部约束条件;长细比为30、45的试件,其破坏模式介于整体弯曲和局部屈曲之间,局部稳定问题突出;长细比为60的试件,以整体弯扭变形为主。研究为Q460高强角钢的规范制订和工程应用提供了合理依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号