首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚吡咯为碳源,通过一步碳化-活化法制备了氮/磷双掺杂分级孔结构的多孔碳。在6mol/L KOH和1mol/L Na2SO4电解液中研究了所制备多孔碳的电化学电容性能。研究表明,活化后的碳材料A-Z0比表面积高达1 433m~2/g,总孔体积为0.96cm~3/g,氮和磷元素的含量分别为1.78%和0.24%,证明A-Z0为氮/磷双掺杂的高比表面积的多孔碳。由于高的比表面积、分级孔道结构以及氮/磷官能团的协同作用,A-Z0材料表现出较为优异的电化学特性。在电流密度为0.5和30A/g时,其比电容分别达到209.3和176F/g,显示出高的比电容和倍率特性。此外,该材料也显示出优异的循环稳定性(4A/g下循环10 000圈后电容保持率为98%)。在中性电解液中,A-Z0组装成的对称两电极电容器呈现出高的能量密度(13.3 Wh/kg),表明该材料在超级电容器等领域具有潜在应用前景。  相似文献   

2.
由于氮掺杂多孔碳材料不仅保留原有材料的高比表面积、高孔隙率和发达的孔道结构等优势,还兼具杂原子良好的润湿性能和导电性,被广泛应用于超级电容器电极材料的研究。以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为原料,通过水热法,在高温高压的条件下,分子链进行“自上而下”的折叠,形成三维纳米微球结构。借助对纳米球的高温热解,使氮元素保留在碳材料中,得到含有大量微孔和介孔结构的掺杂氮碳微球。当碳化温度达到800℃时,PI碳球具有709.39m2/g的高比表面积和良好的氮掺杂率,很大程度上提高了此类电极材料的比电容和润湿性能。电化学测试表明,当扫描速率为0.5A/g时,电极材料能够达到253.6F/g的比电容,且在电流密度达到10A/g时,电极材料的电容保持率为59.6%。同时,在循环10000次后,比电容保持率出现涨幅达到105%,具有优异的循环稳定性。综上,通过自组装和氮掺杂的有效结合,制备的3D氮掺杂多孔碳微球具有理想的电化学性能,为制备超级电容器电极材料提供了一种可供参考的工艺。  相似文献   

3.
以柚子皮水热炭为前驱体,KOH为活化剂,800℃活化制备层次孔炭电极材料。采用扫描电子显微镜(SEM)、N2吸附法对活性炭的表面形貌和孔结构进行了表征,并评价了其在无机电解液体系(3mol/L KOH)中的电化学性能。结果表明,碱碳比为1∶1时制备的活性炭呈蜂窝状结构,其比表面积、总孔容分别达到1421 m2/g和0.7626cm3/g,相应的电极材料具有典型的双电层电容特性,质量比电容和体积比电容分别达到226F/g和250F/cm3(电极片密度为1.1g/cm3),1000次循环之后电容保持率达到91.45%。与柚子皮直接活化制备的电极材料相比,质量比电容和体积比电容分别增加了31.40%和37.36%。  相似文献   

4.
采用水热组装法制备了碳纳米管/氮掺杂多孔碳复合电极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、N2吸附-脱附(BET)和X射线光电子能谱(XPS)表征了复合材料的微观形貌和结构;并采用循环伏安法、恒流充放电和交流阻抗谱测试了复合材料的储能特性。结果表明,水热组装法成功地合成了具有高比表面积(1 039m~2/g)的碳纳米管/氮掺杂多孔碳复合材料。并且该复合材料表现出优异的储能特性,在1A/g下,其比电容高达261F/g,远远高于氮掺杂多孔碳(214F/g)和碳纳米管(109F/g)的比电容;在功率密度为10 500 W/kg下其能量密度仍为53.75 Wh/kg。  相似文献   

5.
以褐煤萃取物为炭前驱体, MgO为阻隔剂, KOH为活化剂, 在800℃惰性气氛下制备出类石墨状多孔炭材料。对该多孔炭材料进行了红外(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和拉曼(Raman)表征。以活化前和活化后多孔炭为电极材料, 利用循环伏安、恒电流充放电、交流阻抗对其进行了电化学电容性能评价和比较。结果表明: 活化后炭材料呈现多孔的薄膜状, 比表面积高达1396 m2/g, 而活化前炭材料比表面积仅为138.4 m2/g。当电流密度为1 A/g和4 A/g时, 活化后炭材料比电容分别为533 F/g和390 F/g; 而活化前炭材料对应的比电容为366 F/g和198 F/g。在电流密度为5 A/g下循环8000圈后, 活化前后炭材料的电容保持率分别为72.5%和89.6%。可见, 经过KOH活化后的炭材料比电容和电化学稳定性有了显著提高。该研究证明阻隔剂和活化剂的使用, 能够获得高度柔性的高电容性能的类石墨状多孔炭。  相似文献   

6.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。   相似文献   

7.
采用蒙脱土为基的新型氮掺杂多孔碳(NMC),通过超声分散法制备NMC@MnO_2复合材料,再与苯胺(ANI)原位聚合得到NMC@MnO_2@PANI复合材料。采用红外光谱、拉曼光谱、X射线衍射和扫描电镜表征复合材料的组成和形貌。复合材料在1mol/L Na_2SO_4电解液中,电流密度0.25A/g时,质量比电容为228.5F/g;1A/g电流密度下,800次循环充放电后,比电容保持率为86%;在1mol/L H_2SO_4酸性电解液中,电流密度0.5A/g时,质量比电容为588.0F/g,在1A/g电流密度下,经过800次循环充放电后,比电容保持率76%。结果表明:NMC@MnO_2@PANI复合材料在中性和酸性电解液中能够表现出较好的电化学电容性能。  相似文献   

8.
由于制备方法简单并且原料易得, 多孔碳合成广泛采用生物质材料, 并用于能源存储。以天然生物质棉花作为碳源, 通过简单的一步法制备得到氮掺杂多孔碳材料。这种多孔碳材料在碳化温度为750℃时具有480 m2/g的比表面积和6.84%的高含氮量。当用作超级电容器电极材料时, 这种碳材料显示出了良好的电容性能。在1 mol/L硫酸电解液中, 电流密度为1 mol/L时, 比电容可以达到252 F/g, 并且在循环10000圈之后仍能保留94%的原电容。这种低成本的棉花基碳材料为超级电容器应用提供了可能。  相似文献   

9.
以苯酚、甲醛为原料,利用水热合成法制备酚醛泡沫前驱体,经炭化和KOH活化后制备具有高比表面积的多孔炭PAFc。采用X射线衍射、扫描电镜和N2吸附-脱附等方法对多孔炭进行表征。结果表明:当炭化温度为800℃、活化比例为1∶2时制备的多孔炭含有丰富的孔结构和高比表面积(1692.24m2/g)。此外,多孔炭也表现出优异的电化学性能,电流密度为1A/g时多孔炭的比电容达255.6F/g,循环5000次后,电容保持率为97.3%。  相似文献   

10.
以胡萝卜为炭源,采用KOH对胡萝卜炭进行活化,制备出具有高比电容的分级多孔炭材料。利用SEM、X射线衍射分析、低温氮气吸脱附等手段对制备的材料进行形貌及结构分析,结果表明,不同碱炭比会造成炭材料不同程度的结构变化,在碱炭比为2∶1时,所制备的炭材料孔隙结构分布最佳,比表面积高达3 111.45 m2/g,总孔容为1.51 m3/g。循环伏安(CV)、恒流充放电(GCD)等电化学测试表明,在最佳活化条件下制备的胡萝卜基多孔炭材料制成的电极在6 mol/L KOH电解液、0.5 A/g电流密度条件下比电容为486 F/g,表明材料具有良好的电容性能;当电流密度提升20倍时,电容量保留为原来的86%,表明材料具有良好的倍率性能;10 A/g电流密度下经8 000次循环后,电容保持率为97.3%,表明材料具有良好的稳定性。胡萝卜基多孔炭材料制成的电极片所组装的水系超级电容器器件能量密度可达14.67 Wh/kg,功率密度为1 000 W/kg。  相似文献   

11.
为提高多孔碳球作为超级电容器电极材料在电解液中的离子迁移速率,通过水热法设计制备了以碳球为外壳,金纳米颗粒为核心的核壳结构复合材料(CS-Au)。之后通过KOH活化,制备的样品(PCS-Au)比表面积可达到962.48m2/g。结果表明:在0.5A/g的电流密度下,PCS-Au表现出225F/g的比容量,相较于纯多孔碳球(PCS)比容量提高了28.5%。使用螺旋季铵四氟硼酸盐和乙腈混合溶液(CF4301)作为电解液,组装成纽扣式对称型超级电容器后,PCS-Au在功率密度为1000W/kg的情况下能量密度为27.63Wh/kg。并且在1A/g电流密度下,经过20000圈循环稳定性测试后容量保持率为104.76%,性能无衰减,展现出很好的循环稳定性。精心设计的核壳结构与较大的比表面积,优异的导电性及丰富的孔结构降低了材料电阻并可以容纳更多的电解液,导致Au纳米颗粒@多孔碳球是一种极具应用价值的超级电容器电极材料。  相似文献   

12.
采用玉米芯为碳源,壳聚糖(CS)为氮源,800℃碳化并进一步通过CO_2活化制备了多孔碳材料。研究玉米芯/CS在不同质量比时对多孔碳材料的孔径分布,表面化学性质及气体吸附性能的影响。利用全自动气体吸附仪、扫描电镜、透射电镜和X射线光电子能谱分析仪对样品进行了孔隙结构和表面化学性质的表征。实验结果表明,所制备的多孔碳材料具有丰富的孔隙结构。当玉米芯/CS质量比为1∶15时,比表面积最大值达到702m~2/g,最大孔容为0.310cm~3/g,N掺杂量为1.59%,在常温常压下CH_4的吸附量达到36mg/g,CO_2吸附量达到117mg/g。  相似文献   

13.
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形, 最大比表面积达到2312 m 2/g, 具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g; 两电极体系中, 5 A/g时的比电容达到201 F/g, 循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中, 电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%, 倍率性能良好, 能量密度高达19.62 Wh/kg。  相似文献   

14.
为得到高电容特性的超级电容器电极材料,以廉价的可溶性淀粉为碳源采用配位-热解法制备了纳米级多孔石墨化碳电极材料。分别利用透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)和N2吸附-脱附(BET)等测试手段对材料的微观结构进行表征,结果表明,合成材料具有较大的比表面积(1 187m2/g)和高的石墨化程度。并对合成材料进行了电化学性能测试,测试结果说明,该材料展示了优异的电容特性,在1A/g时,其电容高达249F/g,5 000次循环后,其比电容仍为初始电容的99.97%。当以此材料为电极组装成电容器器件时,在功率密度为10 500 W/kg下其能量密度仍为46.79 Wh/kg。因此,这种方法制备的纳米级多孔石墨化碳是一种有潜力的超电材料。  相似文献   

15.
开发具有规整纳米球状结构、高比表面积、高电化学活性且合成工艺简单的纳米多孔碳材料,对高储能设备至关重要。以β-环糊精为原料,采用高温水热、炭化以及氢氧化钾和碳酸钾活化制备纳米多孔碳球(NCSs),并对其进行硝酸和过硫酸铵表面氧化改性,系统研究了表面改性对多孔碳球电化学性能的影响。研究结果表明:NCSs呈规整球形结构,球直径200~300nm,比表面积为932.6m~2/g,经表面氧化改性后,球形结构并无发生较大的变化,但电化学性能有明显的提升,其中NCSs经过硫酸铵(APS)氧化改性后制得的NCSs-APS,在扫描速度为5mV/s条件下,比容量为214.1F/g,相比于NCSs(比容量为140.6F/g),比容量提升了52.3%。同时NCSs-APS具有良好的循环稳定性,经3000次循环,比容量保持率为91.4%。  相似文献   

16.
邹毓  周跃云 《包装学报》2024,16(3):45-51
先采用水热法再经过煅烧处理,将氧化镍均匀负载到龙舌兰多孔碳上。采用X射线衍射(XRD)、扫描电镜(SEM)、红外辐射检测等,对NiO/龙舌兰衍生多孔碳复合材料(NiO/C)的结构和形貌进行表征,并通过循环伏安和充放电测试对NiO/C的电化学性能进行研究。结果表明:NiO/C-2具有优秀的能量密度与循环稳定性,在5 A/g的电流密度下,能量密度可达22 W·h/kg;循环10 000次后,容量保持率高达91%。此外,当电流密度为1 A/g时,NiO/C-2的比电容为312 F/g;当电流密度增大到20 A/g时,比电容仍高达155 F/g 。因此,基于龙舌兰多孔碳的结构稳定性,适量的NiO负载可以提升材料的比电容和循环稳定性。  相似文献   

17.
利用聚对苯二甲酸乙二醇酯(PET)为碳源,磷酸为活性剂,采用高温法制备多孔碳(PC),并用不同浓度的硝酸对多孔碳进行氧化改性。用氮气(N2)吸附和傅里叶红外光谱对材料进行结构表征,以恒流充放电和循环伏安法研究所得材料的电容性能。实验结果表明:当PET与磷酸质量配合比为1∶2,900℃炭化时,PC比表面积达1087.4m2/g,孔径3~6nm;经60%(wt,质量分数)硝酸改性后多孔碳(PC-0.60N)的比表面积为872.4m~2/g。当扫描速度为5mV/s时,PC的比电容为188.7F/g,PC-0.60N的比电容达到365.3F/g,经过3000次循环,PC-0.60N的比电容量保持81.4%。  相似文献   

18.
目的以甲壳素纳米纤维、多壁碳纳米管、碳布、吡咯为原料,制备柔性超级电容器复合电极薄膜。方法先利用化学氧化法提高碳布的表面粗糙度,再通过真空抽滤在碳布表面附着甲壳素纳米纤维和多壁碳纳米管,以增加碳布的负载空间,最后通过原位聚合吡咯来增加复合薄膜的电容性能。同时制备氧化碳布/聚吡咯复合薄膜作为对照组。结果制成的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯复合薄膜在扫描速率为5 mV/s时,质量比电容达到了307 F/g,是氧化碳布/聚吡咯质量比电容(175 F/g)的1.75倍;在电流密度为2 A/g时,经过2000次循环后电容保留率为72.3%,库仑效率为73.8%。结论制备的氧化碳布/甲壳素纳米纤维/多壁碳纳米管/聚吡咯薄膜具有较高的比电容和循环稳定性,可以作为超级电容器电极材料应用于物联网行业的有源储能包装。  相似文献   

19.
以原位聚合法制备的煤基聚苯胺为C、N源,羰基铁粉为催化剂,高温催化裂解制得掺N量为0.256%(wt,质量分数,下同)的多孔碳/Fe,再通过液相氧化法或高温水汽法处理,均成功制备出掺N多孔碳/Fe_3O_4。扫描电镜、红外光谱、X射线衍射和电容性能测试表明,在煤/苯胺质量比为1∶1、煤基聚苯胺/羰基铁粉质量比为1∶1、热解温度为1000℃、热解时间为3h,并经液相化学氧化法处理制得的掺N多孔碳/Fe_3O_4复合材料的电容特性较好,在1A/g的电流密度下,单极比电容达到392.45F/g,比能量达到65.95Wh/kg,比功率达到546.96W/kg。掺入的N主要以叔芳胺的形式存在于多孔碳中,多孔碳与Fe_3O_4之间有较强的界面作用。液相化学氧化法制备的Fe_3O_4大多在多孔碳外或多孔碳的孔隙中沉积,分散性更好,表现出比高温水汽法更好的储能作用。  相似文献   

20.
以煤基聚苯胺为碳氮源,乙酸镍、二茂镍为催化剂前驱体,采用分段控温热解工艺和KMnO_4氧化工艺,成功实现掺N多孔碳/氧化镍锰和碳微纳米管的联合制备。分析发现,碳微米管管径在150~400nm之间,碳纳米管管径在60nm左右,壁厚约10nm。多孔碳以介孔为主,BET比表面积为801.59m~2/g,BJH平均孔径为47.87nm;并成功实现N掺杂,部分N以结晶性良好的CNx的状态存在。氧化镍锰主要以NiO的化学状态存在,伴生有NiMn_2O_4和α-MnO_2;并以纳米片的形态附着在多孔碳表面或插入在孔隙中。制备的掺N多孔碳/氧化镍锰的比电容为387.18F/g(1A/g),1 000次充放电后的比电容保持率为81.48%(5A/g)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号