首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
低密度烧蚀防热材料是航天飞行器热防护系统的关键候选材料,其高温力学性能是热防护结构在气动热载荷下结构完整性的关键。本文针对多相纤维增强酚醛树脂低密度烧蚀防热复合材料开展高温压缩性能实验,获得了其压缩强度随温度的变化规律,结合热重、SEM分析了力载荷、热解及氧化反应对压缩强度的影响,揭示了软相碳层弥合和纤维脱黏、拔出两种韧化机制,为多相纤维增强酚醛树脂低密度烧蚀防热复合材料在热防护系统的工程应用提供实验数据支撑。   相似文献   

2.
低密度树脂基防热材料研究进展   总被引:1,自引:0,他引:1  
随着各国航天工业的发展,飞行器朝着高马赫数和长时间飞行发展,由此带来的热防护问题不容忽视,因此研究新型防热材料以应对严酷的飞行环境显得十分重要。自20世纪50年代开始,树脂基热防护材料因其高残碳率、高防热性能及低成本等优点已经成功应用在美国与前苏联各类型号的导弹与火箭上。针对热防护系统轻量化及防隔热一体化的需求,总结了国内外低密度树脂基防热材料的研究现状,简述了添加空心微球减重、构造多孔结构以及密度梯度纤维化设计等3种减重思路及逐渐从均一的低密度材料向梯度化材料演变的设计理念,展望了低密度树脂基防热材料的发展趋势。  相似文献   

3.
航天飞行器外防热复合材料发展概况   总被引:1,自引:0,他引:1  
王静  杨杰  赵文斌 《材料导报》2018,32(Z2):425-429
航天飞行器再入环境由于飞行任务的不断艰巨而愈加恶劣,故对外防热材料的要求也越来越高。本文通过简要分析气动加热环境所造成的外防热材料结构特性给出气动加热环境对于外防热材料的性能要求。接着以耐烧蚀树脂基防热复合材料为主对外防热材料的发展概况给出相关介绍,并提出利用混编纤维增强复合材料各方面的应用优势。  相似文献   

4.
轻质防/隔热功能材料现状与发展   总被引:3,自引:0,他引:3  
介绍了轻质防/隔热功能材料的热防护特性。基于超/高超声速飞行器热防护系统长时间抗烧蚀与隔热的新要求,提出的轻质近零烧蚀材料与低密度隔热材料的多层复合结构,可望解决超/高超声速飞行器抗冲刷与隔热问题。  相似文献   

5.
传统的防热材料大多是依靠材料自身的高熔点"忍受"热流或依靠缓慢烧蚀来被动地延长寿命的,这些材料因其密度大或耐氧化不足等问题已经不能满足飞行器设计者的期望,突破传统的被动式防热的思路从防热机理的源头上探索新的思路或许可以找到可行的技术途径。作者设计了一个新的材料体系——耗散防热材料,即在石墨中加入还原性金属,在烧蚀过程中还原性金属耗散热量,同时耗散外界的氧,自发生成氧化物陶瓷膜。新的材料设计的思想是"利用"热流而不是单纯"忍受"热流,初步试验验证表明,在廉价的石墨渗入耗散剂——铝制备的耗散防热材料,在2 900℃,4 MW/m2热焓值烧蚀下,线烧蚀率仅为传统C/C的1/10。其耗散防热原理包含了以往的汇热防热、辐射防热、烧蚀防热、发汗防热等防热形式,增加了相变反应防热,是一种新的防热原理,这种高效能、低成本的材料预计具有很好的应用前景,也将推动非平衡条件下的金属化学基础理论突破。本材料研究的科学问题,涉及高温、高压、高速气流冲刷等非平衡状态的化学反应问题、金属流动问题等,这些问题的研究必将推动材料科学与传热学、流体力学、燃烧化学、气动力学等学科的交叉互动和新的发展。  相似文献   

6.
热防护系统是发展航天器必须解决的关键技术,而柔性隔热材料由于具有可重复使用、质量轻、维修时间短等优点被广泛采用。介绍了当前各种热防护系统结构与材料的发展状况,并具体叙述了飞行器减速伞的结构、展开、热流分布以及所用柔性材料,对我国柔性防热材料的发展提出了建议。  相似文献   

7.
综述了近年来纳米材料改性树脂基耐烧蚀材料的研究进展。介绍了碳纳米管、石墨烯、蒙脱土、纳米SiO2、纳米碳粉等纳米材料在改性烧蚀材料中的研究近况,详细探讨和比较了改性材料的热稳定性、成炭率、力学性能等,同时分析了纳米材料改性树脂材料中存在的问题,并预测了纳米材料改性耐烧蚀树脂的发展趋势。提出纳米材料,特别是新型的纳米碳材料改性树脂基耐烧蚀材料的研究将是很有发展前景的研究领域,并会进一步得到人们的重视。  相似文献   

8.
采用低密度三维刚性结构作为增强体,利用Si-B-C陶瓷先驱体对纤维进行抗氧化防护,并在纤维骨架的孔隙中填充纳米隔热酚醛树脂,形成了一种抗氧化三维纤维增强酚醛气凝胶材料(三维结构热防护材料).该材料密度从0. 3 g/cm3 提升至0. 7 g/cm3 ,其弯曲强度从12 MPa提升至57 MPa,拉伸强度从10 MPa提升至46 MPa,压缩强度从2 MPa提升至18 MPa,比热容维持在1. 07~1. 1 J/(g·K),热导率从0. 078 W/(m·K)提升至0. 12 W/(m·K).经15 min、2 000 ℃的电弧风洞烧蚀后,该材料后退量为10 mm.综合热力性能测试表明,该材料具有优异的力学强度和抗失效能力,而且纤维采用先进的抗氧化处理,在烧蚀过程中利用原位陶瓷化反应,提升了高温抗烧蚀能力,这种三维结构能够实现多种复杂构型近净尺寸成型,有效提升了防热材料的一体化制备、高效装配的任务适应能力.该类材料在载人航天、高超飞行器防热结构中具有广阔的应用前景.  相似文献   

9.
为研究用于钝头体高超声速飞行器热防护系统的碳/酚醛复合材料在典型服役环境下的烧蚀机制,首先,建立了烧蚀行为的数学模型,模型考虑了材料表面热辐射、固体相的温升吸热、基体热解反应吸热、高温热解气体引射、质量引射引起"热阻塞"效应、热解气体的温升和膨胀吸热等多种能量耗散机制,并利用有限元方法实现了数学模型的求解;然后,预报了在冷壁热流为400 kW·m-2、焓值为5 MJ·kg-1的气动热环境下碳/酚醛复合材料的烧蚀行为。结果表明:在受热过程中,厚度为20 mm的碳/酚醛复合材料碳化层的深度持续增加, 100 s时的表面温度达到1420 K,背壁温度为346 K,热解气体压力达10.3 atm,碳化层深度为7.50 mm。所得结论可为具有长时间大面积热防护需求的高超声速飞行器的热防护系统设计提供支持。   相似文献   

10.
超高温陶瓷基复合材料是以连续碳纤维为增强体、超高温陶瓷为基体的一类复合材料,具有密度低、韧性好、耐高温、抗氧化及耐烧蚀等优异性能,在新型高速飞行器热结构应用方面有着不可替代的作用。碳纤维增强体和陶瓷基体是超高温陶瓷基复合材料的两个重要组成部分,对复合材料使役性能起着决定性作用,但是,碳纤维与陶瓷基体的理化性质差异大,如何将碳纤维与陶瓷基体进行有效复合,以便充分发挥碳纤维轻质、高强韧特性与陶瓷基体抗氧化、耐烧蚀特性,是超高温陶瓷基复合材料基础研究和工程应用需要解决的主要问题。本文论述了有机无机转化法制备超高温陶瓷基复合材料技术的发展思路,介绍了超高温有机陶瓷前驱体的设计与合成、C/ZrC-SiC和C/HfTaC-ZrC-SiC复合材料的研究结果,探讨了解决新型高速飞行器高温气动/燃气环境氧化烧蚀问题的材料技术方案,为连续纤维增强超高温陶瓷基复合材料的技术发展和工程应用提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号