首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Ti-8.5Si、Ti-33Cr和Ti-30V-3Mo钎料实现了钛锆钼(TZM)合金的高温真空钎焊连接,借助SEM、EDS及润湿性试验和抗剪试验等分析试验方法,研究了钛基钎料高温钎焊TZM及钎焊接头经高温热循环后的热稳定性。结果表明,Ti-8.5Si、Ti-33Cr在1520℃/6min的工艺条件下良好润湿TZM,润湿角分别为10°和9°,Ti-8.5Si钎料的铺展面积大于Ti-33Cr钎料的铺展面积,Ti-30V-3Mo钎料在1680℃/8min的条件下在TZM板上的润湿角为5°。Ti-8.5Si/TZM接头界面形成(Ti,Mo)固溶体,钎缝中心由(Ti,Mo)固溶体和Ti5Si3相组成。Ti-33Cr/TZM接头界面形成(Ti,Mo)固溶体,钎缝中心由(βTi,Cr)固溶体和αTi+(αTi+αTiCr2)共晶组成。Ti-30V-3Mo/TZM接头,钎缝区主要由(βTi,V)固溶体和αTi组成,界面区由Ti与Mo形成(Ti,Mo)固溶体。三种钎料钎焊TZM,均形成固溶体钎焊接头而实现钎料与TZM的冶金结合,钎焊接头强度分别为135.8MPa(Ti-8.5Si)、132MPa(Ti-33Cr)和131MPa(Ti-30V-3Mo)。Ti-8.5Si/TZM、Ti-33Cr/TZM接头经过1200℃/60min没有观察到明显的晶间渗入和母材溶蚀,界面固溶体结合形式无变化。Ti-30V-3Mo/TZM接头经过1550℃/60min热循环后,观察到1个晶粒深度的晶间腐蚀,没有明显的母材溶蚀现象,且界面依然保持固溶体结合形式。三种钛基钎料可实现TZM的高温钎焊,依靠界面固溶体实现冶金结合,经高温长时间热循环后钎焊接头组织性能稳定,发生晶间渗入敏感性低,为TZM的高温应用连接提供理论与试验指导。  相似文献   

2.
采用SEM,EDS,XRD和力学试验机等分析测试方法,研究了Ni-Ti钎料对TZM合金钎缝组织和性能的影响。结果表明:Ni-Ti钎料可实现TZM的高温真空钎焊连接。Ni-13.7Ti/TZM界面区,母材中的Mo与钎料中的Ni形成MoNi相,是钎料与TZM形成冶金结合的主要原因。TZM/Ni-44Ti/TZM界面区Ni-44Ti钎料中的Ti与Mo反应,Mo-Ti固溶体,使钎料和TZM形成冶金结合。Ni-44Ti钎料钎焊TZM合金产生严重晶间渗入现象。降低钎料中Ti的含量,晶间渗入和母材溶蚀现象大幅减弱;TZM/Ni-13.7Ti/TZM钎焊接头剪切强度193MPa,TZM/Ni-44Ti/TZM钎焊接头剪切强度167MPa,晶间渗入使钎缝强度降低,降低钎料中的Ti含量,钎焊接头强度提高。  相似文献   

3.
采用Ti基活性钎料对高强石墨进行了高温钎焊试验。研究了焊接温度、保温时间、焊料量、降温速率对试样连接强度的影响。通过正交实验优选工艺,确定最佳工艺为:焊接温度1420℃,保温时间20min,焊料量280mg,降温速率10℃/min。所得连接件的最高相对抗弯强度为62.55%。微观结构研究表明,在石墨/焊料界面处C元素和Ti元素发生了显著的互扩散,生成了厚度约15μm的反应层,实现了良好的界面结合。接头区域XRD分析表明,在石墨/焊料界面上几乎全部为TiC,在焊料内部距此界面200μm处仍有部分TiC存在,但主相是纯Ti,还有部分Ti2Ni。在焊料内部距此界面400μm处主相是纯Ti,次相是Ti2Ni,无TiC存在。  相似文献   

4.
采用研制的CuMn基钎料对TZM与Kovar合金进行了高频真空钎焊研究。利用DTA、氦质谱捡漏仪、激光共聚焦显微镜、SEM、EDS等分析手段,测试了钎料的熔点、对TZM与Kovar合金润湿性,分析了钎缝的气密性、微观组织形貌、界面组织成分等。结果表明:在965℃时,CuMn基钎料在TZM与Kovar合金样品上的润湿角θ分别为30.77°和12.30°。在最大钎焊感应电流为430 A时,焊料对钎缝铺展均匀,钎缝区域无裂纹、无气泡等缺陷,焊件气密性测试漏气率优于6×10~(-11)Pa·m~3/s。钎缝中间层区域为CuMn基钎料凝固组织,钎料与TZM反应界面区域较窄,与Kovar合金的界面反应区域较宽。钎料中的Mn、Cu元素与Kovar合金中的Fe元素更容易相互扩散迁移发生冶金熔合反应。  相似文献   

5.
6.
钛基非晶态钎料钎焊高强石墨与铜的界面特征   总被引:2,自引:1,他引:2       下载免费PDF全文
石墨在核工业中得到广泛应用,铜与其连接起到加强散热的作用,二者间的连接问题成为必须要解决的技术关键.采用非晶态TiZrNiCu钎料箔真空钎焊紫铜与普通高强石墨,研究了工艺参数对接头界面组织的影响.结果表明,接头室温剪切和拉伸时均断于石墨母材侧,经接头微观组织分析,认为高强度的结合界面是由于钎料与石墨反应生成了TiC薄层,钎缝主要是以固溶体为基,由金属间化合物相间其中的组织结构形成的.  相似文献   

7.
采用Ni-Cr合金钎料,在Ar气保护条件下,对金刚石磨粒进行了激光钎焊研究。采用扫描电镜(SEM)和能谱仪(EDS)及X射线衍射仪(XRD)分析金刚石磨粒与Ni-Cr钎料结合界面的组织结构与物相组成,并研究了钎料与金刚石界面处碳化物的形成机理。结果表明,激光钎焊过程中,在金刚石表面形成的富Cr层与金刚石表面的C元素反应生成碳化物Cr_3C_2。通过反应热力学与动力学分析显示,界面反应产物可以依靠置换反应形成,使金刚石磨粒与钎料实现了牢固结合。  相似文献   

8.
钛基钎料真空钎焊立方氮化硼的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ti-Zr-Ni-Cu钎料在优化钎焊温度和时间下对CBN磨粒进行了真空钎焊试验,实现了CBN与钢基体的高强度连接.采用SEM对CBN表面化合物三维形貌进行了观察分析,采用EDS分析了CBN表面化合物及钎料与钢基体界面成分变化,采用XRD对焊后的CBN磨粒及其表面的化合物进行了物相分析,最后对CBN试样进行了断口分析.结果表明,CBN表面生成了Ti元素的的针状、块状化合物TiB2和TiN,磨粒与钎料间界面形成化学冶金结合,这正是CBN与Ti-Zr-Ni-Cu有良好润湿性和高强度连接的主要原因.断口形貌的分析表明,CBN与Ti-Zr-Ni-Cu钎料间的断口发生在CBN磨粒内部,说明CBN磨料与Ti-Zr-Ni-Cu合金钎料的结合强度大于CBN磨粒本身的强度.  相似文献   

9.
在钎焊温度为1040℃时,采用Ti-28Ni(质量分数,%)钎料实现了TZM合金的真空钎焊连接。采用SEM、EDS等方法分析了接头界面的微观组织结构,并研究了保温时间对TZM合金接头界面结构和性能的影响规律。结果表明,接头的典型界面组织结构为:TZM/Ti_(ss)/δ-Ti2Ni/Ti_(ss)/TZM;随保温时间的延长,焊缝宽度逐渐变小,其中连续的Ti_(ss)层厚度基本无变化,中间的δ-Ti_2Ni层厚度有所降低;同时,TZM母材向焊缝中的溶解量增加。保温时间较短时,焊缝中残留有未溶解的TZM块,延长保温时间使母材溶解更充分。当保温时间为10 min时,接头平均抗剪强度最高为92.6 MPa,断裂发生于δ-Ti_2Ni层,为脆性沿晶断裂。  相似文献   

10.
采用自主研发的一种Ti-Zr-Cu-Ni-Co-Mo非晶钎料对TiAl合金进行钎焊连接,钎焊温度为1 000 ℃,时间为5 min,对所得的钎焊接头进行了高温抗剪强度和抗拉强度研究,并与母材强度进行了对比. 结果表明,钎焊接头在700 ℃高温下可长期服役,但剪切试验温度高于700 ℃后由于氧化物的生成和钎焊中心区显微组织发生变化导致剪切性能急剧下降,钎焊接头跟母材在不同拉伸试验温度下的抗拉强度随试验温度上升呈下降趋势,两者差距先减小后增大,分别在不高于600和800 ℃条件下仍能保持室温性能的80%以上.  相似文献   

11.
12.
采用Ni-Cr钎料真空钎焊镀钛CBN磨粒和45号钢。用扫描电子显微镜、能谱仪、X射线衍射仪综合分析镀钛CBN磨粒的焊后形貌,磨粒与Ni-Cr钎料连接界面的微观结构和钎焊后磨粒表面的生成物。发现:钎焊过程中Ni-Cr钎料沿钛镀层爬升,对磨粒浸润性良好。焊后CBN磨粒出露部分的钛镀层在Ni原子的扩散下转变为Ni-Ti金属层。而在钎料包埋处,磨粒的钛镀层在钎焊过程中与CBN、Ni-Cr钎料相互扩散反应,生成了一层以NiTi和Ni0.3Ti0.7N为主的中间层,实现镀钛CBN磨粒和Ni-Cr钎料的冶金结合。   相似文献   

13.
采用非晶和晶态Ti-25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(质量分数,%)钎料对Ti-47Al-2Nb-2Cr-0.15B(摩尔分数,%)合金进行真空钎焊连接,对两种钎料的熔化行为、润湿铺展性、填缝隙能力以及由钎焊TiAl基合金所得的钎焊接头进行详细的研究。结果表明:与晶态钎料相比,非晶钎料具有更窄的熔化温度区间、更低的液相线温度和熔化激活能;同时,非晶钎料在Ti-47Al-2Nb-2Cr-0.15B合金表面上具有更优异的钎焊性。非晶和晶态两种钎料的钎焊接头均由两侧的界面反应层和中心钎焊层组成,非晶钎料钎焊接头的抗拉强度均高于相同钎焊工艺参数下的晶态钎料钎焊接头的抗拉强度,且在钎焊温度1273K下获得的钎焊接头的抗拉强度达到最大值254 MPa。  相似文献   

14.
李小强  娄立  屈盛官  杨超  李力 《焊接学报》2019,40(10):80-85
采用Ti-Zr-Fe-Cu-Ni-Co-Mo钎料实现了TiAl合金与GH536合金的有效钎焊连接. 运用SEM,EDS,XRD等手段对钎焊接头的界面组织进行了分析,并检测了钎焊接头的抗剪强度. 结果表明,钎焊接头的典型界面组织由TiAl合金一侧到GH536合金一侧包括Ⅰ层(Ti3Al + TiAl)、Ⅱ层(Al3NiTi2)、Ⅲ层(以AlNi2Ti为主,并含有富铬(Cr,Ni,Fe)SS、富镍(Cr,Ni,Fe)SS和(Ni)SS + TiNi3)和Ⅳ层(以富铬(Cr,Ni,Fe)SS为主,并含有富镍(Cr,Ni,Fe)SS,AlNi2Ti和(Ni)SS + TiNi3). 当钎焊时间为10 min时,在1 110 ~ 1 170 ℃的钎焊温度范围内,随着钎焊温度的升高,钎焊接头的抗剪强度先升高后降低. 钎焊温度对原子扩散和金属间化合物的形成有较大的影响,较低或较高的温度都会导致接头强度偏低. 1 150 ℃钎焊10 min获得的接头抗剪强度最高,为183 MPa,接头主要断裂在Ⅱ层.  相似文献   

15.
采用粉末冶金和轧制工艺制备出TZM合金和稀土镧掺杂的La-TZM合金,通过动电位极化研究合金电化学腐蚀行为,扫描电子显微镜观察、能谱定量分析表征腐蚀产物显微结构特征。保持Cl~-浓度不变分别探讨合金在中性、酸性、碱性介质中耐侵蚀能力。结果表明,TZM合金在中性和碱性介质中抗腐蚀性能优于La-TZM合金,而在酸性介质中La-TZM合金抗腐蚀性能优于TZM合金,两类合金抗腐蚀性均表现为酸性介质强于中性介质,碱性介质最弱。Cl~-有效破坏腐蚀表面形成的钝化膜,OH~-和Cl~-双重侵蚀促使两类合金晶间腐蚀加剧、粉末冶金制备的TZM合金及La-TZM合金对酸性介质具有良好的耐蚀性。  相似文献   

16.
采用OM、SEM和XRD观察了CuAgNi钎料及其钎焊钨基粉末合金接头的微观组织,对比研究了CuAg和CuAgNi钎料钎焊钨基粉末合金接头的高温剪切强度,进一步分析了CuAgNi钎料钎焊接头的热疲劳性能。研究表明:Ni对钎焊接头室温和高温下的剪切强度均有促进作用;接近室温(50℃)时,钎焊接头剪切强度为214.7MPa,比不添加Ni时增加了32.37%;400℃时,剪切强度为121.9MPa,比未添加Ni时增加了91.67%;且当温度超过300℃时,结合界面的氧化使接头的结合强度急剧下降。热疲劳试验中,随着热循环次数的增加,裂纹在α-Ag和β-Cu结合处萌生后逐步扩展,使接头剪切强度逐步降低。  相似文献   

17.
奥氏体不锈钢-铜钎料钎焊界面反应行为分析   总被引:1,自引:1,他引:1       下载免费PDF全文
针对电弧钎焊奥氏体不锈钢时,易产生裂纹的问题,采用316LN不锈钢母材和多种铜基钎料,研究了电弧钎焊、炉中钎焊和真空钎焊316LN不锈钢和铜基钎料时的界面反应行为.结果表明,电弧钎焊条件下钎料对母材的润湿性随着电流的加大而提高,钎料沿母材晶界的扩散不明显,在电流较高时母材局部熔化,且易形成沿晶界裂纹.炉中钎焊过程中钎料沿母材晶界扩散明显,但不易形成裂纹;真空钎焊过程中钎料沿母材晶界扩散显著,形成较厚的界面层,但无裂纹出现.较大的焊接热应力以及钎料沿母材晶界扩散造成的晶界弱化是形成界面裂纹的必要条件.  相似文献   

18.
邹家生  王超  许祥平  王磊 《焊接学报》2011,32(12):33-36
采用CuP7.7Sn5.4Nil4Si0.2Zr0.04晶态与非晶钎料钎焊紫铜,通过微观手段对比分析了钎焊温度和保温时间对晶态与非晶态钎料钎焊接头成分和组织的影响.结果表明,CuP7.7Sn5.4Nil4Si0.2Zr0.04非晶钎料钎焊接头由界面区、扩散区以及钎缝中心区组成;随钎焊温度提高或保温时间增加,晶态钎料和非...  相似文献   

19.
利用快速凝固技术制备出4种不同成分配比的Ti-Zr-Cu-Ni基快冷薄带钎料,以TC4薄板作为金属造型材料,采用高频感应钎焊技术,层积成型长方体试样,对成型试样的力学性能和显微组织进行分析。结果表明,除Ti48-Zr25-Cu10-Ni11-Fe4-Sn1.5-Si0.5(at%)为快冷非晶钎料外,其余均为晶态钎料。在相同钎焊工艺参数下,非晶薄带钎料成型试样的拉伸强度远远高于由晶态钎料成型试样的拉伸强度。非晶钎料的钎焊接头组织主要由(Ti,Zr)_2(Cu,Ni)+(Ti,Zr)_(ss)共晶组织和富Zr的α-Ti固溶体组成;而快冷晶态钎料的钎焊接头组织主要由Ti基固溶体α-Ti组成,其晶粒粗大,晶内存在针状马氏体,导致脆性增加,拉伸强度降低。4种钎料的钎焊试样拉伸断口均呈人字纹形貌,为脆性断裂。  相似文献   

20.
采用TiZrNiCu钎料实现了Ti53311S高温钛合金的钎焊连接,通过SEM、EDS、微区XRD等方法分析了接头界面的微观组织结构,重点研究了钎焊温度对接头界面结构及力学性能的影响规律。结果表明,钎焊接头的典型界面结构为:Ti53311S/α+β/(Ti,Zr)2(Cu,Ni)化合物/α+β/Ti53311S;随钎焊温度的升高,(Ti,Zr)2(Cu,Ni)化合物数量不断减少,当钎焊温度超过α+β→β转变温度时,钎缝及钛合金母材均形成片层状α+β组织;接头抗拉强度随钎焊温度升高逐渐增加后趋于稳定,当在1010℃/10 min条件下钎焊时,接头平均抗拉强度最大为912.8 MPa,断口分析表明,断裂发生于钎缝处,为脆性解理断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号