首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以银纳米颗粒作为传热增强材料制备新型的静电纺聚丙烯腈/纳米银(PAN/Ag-NPs复合纳米纤维支撑膜,以癸酸-肉豆蔻酸(CA-MA)二元低共熔物为固-液相变材料,通过物理吸附法制备CA-MA/PAN/Ag-NPs复合定形相变纤维膜。扫描电子显微镜图像观察显示CA-MA被成功地吸附到静电纺PAN/Ag-NPs复合纤维膜的孔隙网络结构中。DSC测试结果表明添加Ag-NPs对复合纤维膜的储热性能没有显著影响,其相变温度约为10~31℃之间,相变焓值约为131~147kJ/kg。此外,添加10wt.%Ag-NPs后CA-MA/PAN复合纤维膜的储热和放热时间分别缩短了约47%和49%。  相似文献   

2.
以癸酸(CA)、月桂酸(LA)和肉豆蔻酸(MA)为原料制备了新型的脂肪酸三元低共熔物(CA-LA-MA),并将其作为固-液相变材料,以沉积2 h银(Ag)纳米颗粒的静电纺聚丙烯腈(PAN)纳米纤维膜为支撑材料,通过物理吸附法制备了新型的CA-LA-MA/PAN和CA-LA-MA/PAN/Ag定型相变复合纤维膜。研究了磁控溅射Ag纳米层对定型相变复合纤维传热性能的影响。结果表明,沉积Ag纳米层后定型相变复合纤维膜的储热和放热时间分别缩短了31%和25%。制备的CA-LA-MA/PAN/Ag定型相变复合纤维膜的融化温度和结晶温度分别为19.87℃和11.63℃,融化焓值和结晶焓值分别为123.1 kJ/kg和121.5 kJ/kg。  相似文献   

3.
采用静电纺丝法制备了负载不同含量纳米石墨粉(NG)的聚丙烯腈(PAN)基复合纤维膜作为支撑材料,以癸酸-月桂酸-肉豆蔻酸(CA-LA-MA)三元低共熔物为固-液相变材料,通过物理吸附法制备CA-LA-MA/PAN/NG定形相变复合纤维膜。分别采用傅里叶变换红外光谱仪、扫描电子显微镜、差示扫描量热仪和传热测试装置对定形相变复合纤维膜的化学性能、形貌结构、储热性能、热能储存和释放速率进行深入分析。研究结果表明,CA-LA-MA三元低共熔物成功地被吸附到PAN基复合纤维膜中。制备的定形相变复合纤维膜的相变融化温度约为19℃,相变焓值约为114~131kJ/kg。由于添加了具有高导热系数的NG使定形相变复合纤维膜的热能储存和释放效率明显提高了43%和42%。  相似文献   

4.
采用静电纺丝法制备了负载不同含量纳米石墨粉(NG)的聚丙烯腈(PAN)基复合纤维膜作为支撑材料,以癸酸-月桂酸-肉豆蔻酸(CA-LA-MA)三元低共熔物为固-液相变材料,通过物理吸附法制备CA-LA-MA/PAN/NG定形相变复合纤维膜。分别采用傅里叶变换红外光谱仪、扫描电子显微镜、差示扫描量热仪和传热测试装置对定形相变复合纤维膜的化学性能、形貌结构、储热性能、热能储存和释放速率进行深入分析。研究结果表明,CA-LA-MA三元低共熔物成功地被吸附到PAN基复合纤维膜中。制备的定形相变复合纤维膜的相变融化温度约为19℃,相变焓值约为114~131kJ/kg。由于添加了具有高导热系数的NG使定形相变复合纤维膜的热能储存和释放效率明显提高了43%和42%。  相似文献   

5.
柯惠珍  李永贵 《功能材料》2020,(1):1100-1104
以不同质量比例的聚丙烯腈/纳米碳化硅(PAN/SiC)复合纤维膜为支撑材料,以癸酸-棕榈酸-硬脂酸(CPS)三元低共熔物为固-液相变材料,通过物理吸附法制备CPS/PAN/SiC定形相变复合纤维膜。分别采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和传热测试装置研究不同含量纳米SiC对定形相变复合纤维膜的形貌特征、储热性能、热能储存和释放速率的影响。SEM图像显示负载不同含量纳米SiC对CPS/PAN/SiC定形相变复合纤维膜的形貌结构没有显著影响。DSC测试结果表明随着支撑纤维膜中SiC颗粒含量的增加,定形相变复合纤维膜的相变温度和相变焓值没有明显变化。根据传热测试数据显示随着纳米SiC含量的增加,定形相变复合纤维膜的融化与结晶时间显著缩短了约20%~46%。  相似文献   

6.
首先采用磁控溅射法在静电纺聚氨酯(PU)纤维膜表面沉积纳米银(Ag)导热金属薄膜,并将其作为支撑材料,通过物理吸附法吸附癸酸-月桂酸-肉豆蔻酸-棕榈酸四元低共熔物(CA-LA-MA-PA),制备出新型的CALA-MA-PA/PU/Ag定型相变复合纤维膜。EDX测试结果显示Ag纳米颗粒已经被成功地沉积到静电纺PU纤维膜上。SEM图像显示经过磁控溅射后静电纺PU纤维的直径明显增加,CA-LA-MA-PA四元低共熔物被均匀地吸附到PU和PU/Ag纤维膜的孔隙结构中。热分析结果表明CA-LA-MA-PA/PU/Ag定型相变复合纤维膜的融化温度和融化焓值分别为17℃和94.81kJ/kg。与CA-LA-MA-PA/PU定型相变复合纤维膜相比较,CALA-MA-PA/PU/Ag定型相变复合纤维膜的储热和放热时间分别缩短了约42%和24%。  相似文献   

7.
研究首先制得二元脂肪酸低共熔物,然后将用静电纺丝法制备不同SiO2含量的、并对其进行炭化的PAN/SiO2纳米纤维膜作为支撑材料,吸附二元脂肪酸低共熔物制得碳/SiO2纳米纤维膜基定形相变材料(CSNPCM),利用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等对制备出的定形相变材料的形貌结构和储热性能进行分析和表征。随着SiO2含量的增加,定形相变材料对二元脂肪酸低共熔物的吸附容量有所降低。SEM结果表明,二元脂肪酸低共熔物均匀地包埋、分散在多孔纳米纤维膜的三维网络结构中。DSC测试结果表明,SiO2的加入降低了定形相变材料的相变潜热,对其相变温度无太大影响。  相似文献   

8.
采用静电纺丝技术成功制备了以5种脂肪酸二元低共熔混合物(LA-MA、LA-SA、MA-PA、MA-SA、PA-SA)为固液相变材料,聚对苯二甲酸乙二酯(PET)为支撑材料的定形相变复合纤维。研究了不同种类的脂肪酸二元低共熔物对复合相变纤维的形貌结构、储热性能以及力学性能的影响。研究结果表明这5种定形相变复合纤维的表面均呈现褶皱的形貌特征,同时纤维直径也明显增大。热分析结果表明当改变纤维中脂肪酸二元低共熔物的种类时,复合相变纤维的熔化温度和熔化焓值均随之而变化,其中熔化温度最低为33.23℃,最高为52.82℃,熔化焓值最低为62.75kJ/kg,最高为94.76kJ/kg。力学性能测试结果表明,由于脂肪酸二元低熔物的加入复合相变纤维的拉伸强度减小,断裂伸长率增大。  相似文献   

9.
以肉豆蔻酸(MA)和硬脂酸(SA)的二元低共熔混合物为相变储能基材、改性粉煤灰为复合基底,采用熔融混合法制备了MA-SA/改性粉煤灰的复合相变储能材料(CPCM)。利用TG/DTA与FT-IR分析研究了CPCM的热性能与结构。结果表明,MA-SA低共熔物可均匀的嵌入改性粉煤灰的多孔结构中。经过800次的吸放热循环后,CPCM的相变温度和相变焓变化都不大,表现出较好的储热稳定性,有望在储能方面得到实际的应用。  相似文献   

10.
由二元相图确定出石蜡-硬脂酸二元低共熔物的质量配比为m(石蜡)∶m(硬脂酸)=17∶8,按上述配比通过熔融共混法制备出石蜡-硬脂酸复合相变材料,将石蜡-硬脂酸复合相变材料与石墨通过熔融共混法制备出石蜡-硬脂酸/石墨复合相变材料,通过储/放热实验和差示扫描量热法(DSC)对石蜡-硬脂酸和石蜡-硬脂酸/石墨复合相变材料的热性能进行了测试和表征。结果表明,石蜡-硬脂酸复合相变材料的相变储热性能好;随着石墨含量的增加,石蜡-硬脂酸/石墨复合相变材料的储/放热时间明显缩短,导热性能大幅度提高,但相变潜热逐渐降低,相变温度保持不变。制备的石蜡-硬脂酸/石墨复合相变材料具有合适的相变温度、较高的相变潜热,导热性能优良,可用于低温储能领域。  相似文献   

11.
以聚对苯二甲酸乙二酯(PET)、棕榈酸和硬脂酸二元低共熔物(PA-SA)和多壁碳纳米管(MWNTs)为原料,通过静电纺丝的方法制备了新型的PA-SA/PET/MWNTs定形相变复合纤维。研究了强酸处理后的MWNTs对静电纺PA-SA/PET/MWNTs复合相变纤维的形貌结构和储热性能的影响。FT-IR光谱分析表明,强酸处理后在MWNTs的表面成功的引入了羧基(-COOH)官能团。SEM观察表明,随着MWNTs的加入,复合相变纤维表面沟槽变得更加明显且纤维直径明显增大。DSC分析表明了MWNTs的含量对复合相变纤维的熔化焓值和结晶焓值有一定的影响,对熔化温度和结晶温度没有显著性的影响。  相似文献   

12.
CA-SA/蒙脱土复合相变贮能材料的制备、结构与性能   总被引:5,自引:0,他引:5  
用差式扫描量热(DSC)技术研究了癸酸(CA)和硬脂酸(SA)二元混合物的热性能,确定了CA-SA二元低共熔物的组成和相变温度;在此基础上,研究了CA-SA二元低共熔物与蒙脱土复合贮能材料的制备方法,并用XRD、IR、DSC等方法对复合材料的结构和性能进行了表征与测试.研究结果表明:CA-SA被有效地包封在蒙脱土层间,制得复合材料的相变温度为20.21℃,相变焓为120.43J/g.  相似文献   

13.
采用溶胶-凝胶法,以异丙醇铝(AIP)为单一铝源,无水乙醇为溶剂,聚乙烯吡咯烷酮(PVP)为聚合物模板,并添加浓盐酸作为催化剂和胶溶剂,制备均一稳定的前驱体纺丝液,再结合静电纺丝与高温煅烧技术制备了Al_2O_3纤维毛毡,用其作为支撑材料吸附月桂酸-棕榈酸(LA-PA)二元脂肪酸低共熔物制备复合定形相变材料。利用红外光谱、X射线衍射、扫描电镜和BET比表面积分析仪等手段研究样品的表观形貌与晶型结构。结果表明:经吸附后制得的LA-PA/Al_2O_3复合定形相变材料具有良好的形貌结构。通过差示扫描量热仪、热导率及自组装热性能测试仪对制备的LA-PA/Al_2O_3复合定形相变材料的储热性能及热能储存/释放性能进行了研究。结果发现其具有适宜的相变温度和较好的相变焓值,拓宽了复合定形相变材料的应用范围。  相似文献   

14.
黄平  丁益民  李宣瑶 《材料导报》2016,30(Z1):214-216, 219
以肉豆蔻酸(MA)为相变储能基材、改性粉煤灰为复合基底,采用熔融混合法制备了肉豆蔻酸/改性粉煤灰复合相变储能材料。利用TG/DTA与IR分析研究了复合相变储能材料的热性能与结构。结果表明:MA可均匀地嵌入改性粉煤灰的多孔结构中。经过400次储放热循环后,其相变温度和相变焓变化都不大,表现出较好的储热稳定性,有望在储能方面得到实际的应用。  相似文献   

15.
以纤维素和聚乙烯为支撑材料,月桂酸和十四醇低共熔物为相变材料,利用纤维素吸附月桂酸和十四醇低共熔物,制备了十四醇-月桂酸/纤维素/高密度聚乙烯复合相变材料。通过力学性能、红外光谱、扫描电子显微镜、差示扫描量热和热重分析研究了材料的性能。结果表明:纤维素对低共熔物的最大吸附量为61%,高密度聚乙烯含量为50%时,纤维素的力学和相变性能最佳,此时纤维素的拉伸、弯曲和冲击强度分别为11.3MPa、12.1MPa和3.4kJ/m2。相变温度为25.13℃,相变焓为30.03J/g。通过热循环实验,表明相变材料具有良好的热可靠性。  相似文献   

16.
以单一脂肪酸癸酸(CA)、月桂酸(LA)、肉豆蔻酸(MA)、棕榈酸(PA)和硬脂酸(SA)为原料,使用Schrader公式和MATLAB软件分析了脂肪酸二元低共熔物(CA-LA和CA-MA)、三元低共熔物(CA-LA-PA、CA-LA-SA、CA-MA-PA和CA-MA-SA)和四元低共熔物(CA-LA-PA-SA和CAMA-PA-SA)的共晶相图。确定了以上8种脂肪酸低共熔物的共晶质量比例。采用差热扫描仪(DSC)测试了脂肪酸多元低共熔物的储热性能,测试结果表明:脂肪酸低共熔物的相变温度明显低于脂肪酸的相变温度,且随着低共熔物中组分的增加而降低。制备出的脂肪酸低共熔物的融化温度和融化焓值分别为15~31℃和127~155kJ/kg。  相似文献   

17.
以棕榈酸-十六醇(PA-HD)低共熔物为相变材料,硅酸钠为硅源,通过低热固相化学合成方法制备出棕榈酸-十六醇/二氧化硅相变储能材料(PA-HD/SiO2)。利用FT-IR,ESEM,DSC,融化-凝固曲线测试对材料的结构、形貌和性能进行表征。结果表明:当相变材料与硅酸钠质量比为2∶1时可实现相变材料的有效包覆,PA-HD/SiO2相变焓值和相变温度分别为102.35J·g-1和53.69℃,该定形复合相变材料具有良好的传热性能,因为包覆作用,使得相变材料的相变温度有所升高。  相似文献   

18.
癸酸、棕榈酸、硬脂酸形成的三元低共熔物与膨胀石墨通过真空浸渍法制备出新型癸酸-棕榈酸-硬脂酸/膨胀石墨储能复合相变材料,适宜的质量比为m(癸酸)∶m(棕榈酸)∶m(硬脂酸)=77.0∶11.5∶11.5,m(癸酸-棕榈酸-硬脂酸)∶m(膨胀石墨)=13∶1。采用DSC、FT-IR、TG、SEM、冷热循环实验和蓄/放热实验研究了材料的结构和热性能。SEM和FT-IR分析结果表明低共熔物与膨胀石墨是通过物理吸附方式结合。DSC结果表明复合材料融化和凝固时的相变温度为28.93℃和16.32℃,相变潜热为137.38J/g和141.51J/g。TG结果表明复合相变材料在100℃以下具有良好的热稳定性。500次热循环和蓄/放热实验表明循环前后复合相变材料的热可靠性好,且使用寿命长。膨胀石墨的添加改善了复合材料的热性能和热导率。研究表明制备的新型复合相变材料具有合适的相变温度、较高的相变潜热和热导率,热性能稳定可靠,可用于低温蓄能领域。  相似文献   

19.
以硬脂酸(SA)为相变储能物质,腈纶废丝(PAN)为聚合物基体,采用湿法纺丝法制备了PAN/SA相变纤维。研究表明,相变纤维中PAN与SA大分子依靠分子间作用力结合在一起;SA在纤维基体中分布均匀,无相分离现象;PAN/SA相变纤维的相变焓达到48.84J/g,且DSC热循环显示纤维具有较好的热稳定性;PAN/SA相变纤维相对于PAN纤维具有良好的保温性;PAN/SA相变纤维在110℃热空气中迅速干燥的力学性能优于常温处理的力学性能。  相似文献   

20.
赵思勰  晏华  汪宏涛  李云涛  余荣升  杨健健 《材料导报》2017,31(10):107-111, 131
以月桂酸为相变材料,膨胀珍珠岩为载质,利用真空吸附法制备出月桂酸/膨胀珍珠岩复合相变材料(LA/EP-PCMs)。通过FT-IR、SEM、DSC、TGA对LA/EP-PCMs的微观结构、相变温度、相变潜热、热稳定性进行表征。结果表明:月桂酸能较好地吸附在膨胀珍珠岩孔隙内,它们之间的化学相容性良好。LA/EP-PCMs中月桂酸饱和含量为65%,此时其相变温度为41.3℃,热焓为110.1J/g。将5%的纳米石墨纤维(NGF)作为添加剂加入到LA/EP-PCMs中,其导热系数由0.09 W/(m·K)提高到0.16 W/(m·K),增长了77.7%。熔融凝固实验表明:掺入NGF将改善复合相变材料的蓄放热能力,其强化导热机理是在相变基体外表面和内部形成了导热网络。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号