首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以包套挤压镍微合金化TiAl合金为研究对象,研究了热处理工艺对合金组织和室温、800℃拉伸性能的影响.结果表明,70%变形量包套挤压合金经(α γ)双相区1250℃热处理获得了再结晶完全的双态组织,其中不含有残留的层片结构;挤压合金经(α2 γ)双相区退火处理后,合金室温拉伸屈服强度为535MPa,抗拉强度为650MPa,延伸率为3%;800℃拉伸屈服强度为365MPa,抗拉强度为400MPa,延伸率为156%,这种组织有利于进一步加工成形,使超塑成形成为可能.  相似文献   

2.
目的 研究电子束熔丝沉积Al-Si合金的微观组织与力学性能以及后续热处理的影响。方法 采用电子束熔丝沉积快速成形技术,分别对直径2 mm的4043和4047铝合金丝材进行增材制造成形,研究样品在不同方向上的微观组织与力学性能以及后续热处理的影响。结果 打印态的4043和4047合金的致密度分别为99.81%和99.88%,热处理后略有降低,分别为98.94%和99.77%。打印态样品中含有一些由硅颗粒和杂质相组成的条带状微观组织。打印态样品中含有近似等轴状与棒状的两类细小Si颗粒。打印态样品在长、宽、高3个方向上的拉伸强度相当,4043合金的抗拉强度为120~127 MPa,伸长率为12%~30%;4047合金的抗拉强度为151~155 MPa,伸长率为15%~30%。经热处理后,样品的强度略有降低,但伸长率显著提升。结论 通过控制EBF3参数,可以获得致密无缺陷的具有良好力学性能的块体Al-Si合金样品,其力学性能可通过后续热处理进一步调控。  相似文献   

3.
借助有限元模拟、光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)和维氏硬度仪研究了激光选区熔化和铸造成形TC4钛合金的微观组织演变及力学性能,进一步分析了不同成形条件下液态金属凝固冷却对其微观组织和力学性能的影响。结果表明:激光选区熔化与铸造成形的TC4钛合金分别为针状马氏体α'相的网篮组织、α+β相的魏氏组织。与铸造相比,激光选区熔化成形TC4钛合金具有极快的冷却速率(1.78×107℃·s~(-1))和较高的温度梯度,元素类型相同,晶体取向明显。同时,利用激光选区熔化(SLM)技术成形的TC4试样的抗拉强度、屈服强度、伸长率和硬度分别为1 120.83 MPa、916.31 MPa、9.5%和123.04HV,而铸造试样的抗拉强度、屈服强度、伸长率和硬度分别为917.67 MPa、786.23 MPa、8.0%和77.876HV。与铸造成形相比,SLM成形的TC4试样的抗拉强度、屈服强度、伸长率和硬度增大,分别提升了22.14%、16.54%、18.75%和58%,因此激光选区熔化成形的TC4试样具有较好的力学性能。  相似文献   

4.
目的 研究固溶时效处理对电弧增材制造TC4钛合金微观组织和力学性能的影响规律。方法 设置了1组时效处理(AT,600 ℃/2 h/空冷)和2组固溶+时效处理(SA1,800 ℃/1 h/炉冷+600 ℃/2 h/空冷;SA2,870 ℃/1 h/炉冷+600 ℃/2 h/空冷)策略,对电弧增材制造TC4钛合金进行了热处理试验。通过扫描电镜(SEM)进行微观组织形貌和断口形貌观察,通过拉伸试验机进行室温力学性能测试。结果 沉积态试样的微观组织均匀性较差,主要由马氏体α¢相、网篮组织、不连续的晶界α相(α Grain Boundary,αGB)和集束组织构成。AT并未完全消除马氏体α¢相,但提高了其延展性。经固溶+时效处理后,马氏体α¢相消失,晶粒内部主要由网篮组织和αGB组成。平均抗拉强度由沉积态的999.67 MPa降低到SA2的936.46 MPa,而平均延伸率从6.23%提高到12.48%,且SA2样品显示出更低的力学性能各向异性。其中沉积态试样抗拉强度、屈服强度和延伸率的各向异性值(IPA)分别为4.82、0.96和28.7。SA2试样抗拉强度、屈服强度和延伸率的IPA分别为0.3、0.42和5.56。结论 固溶时效处理有助于提高电弧增材制造TC4钛合金微观组织均匀性,并显著降低力学性能的各向异性。  相似文献   

5.
杨立军  郑航  李俊  隋泽卉 《材料导报》2021,35(12):12103-12109
为获得力学性能优良的316L合金,研究了激光选区熔化(SLM)成型316L合金试样在400℃/2 h、900℃/2 h、1050℃/2 h热处理后的微观组织与力学性能.使用拉伸试验机和冲击试验机分别对试样进行拉伸和冲击实验;用数显硬度计测试316L合金在不同热处理工艺下的硬度差别,通过光学显微镜和SEM观察试样的断裂表面组织形貌,分析断裂机理.采用电子背散射衍射仪观察热处理前后晶面的相位变化.结果表明:SLM成型试样在900℃/2 h水冷条件下,抗拉强度最高达到680 MPa;在1050℃/2 h水冷条件下,试样具有最大(18%)的延伸率;试样的硬度随着热处理温度的升高呈现出先升高后降低的趋势.未处理的SLM成型试样沿沉积方向形成柱状晶粒,但经处理的试样随着热处理温度的升高,合金元素固溶重组,晶面位向差减小,得到较均匀的各向同性配置.  相似文献   

6.
张荣华  张永安  朱宝宏  王峰 《材料导报》2013,27(14):123-125
采用喷射成形和挤压工艺制备了Al-8.5Fe-1.3V-1.7Si合金,通过金相、扫描电镜和力学性能测试等实验分析了挤压件的组织和性能。结果表明:沉积态合金中,相组成主要为α-Al、α-Al12(Fe,V)3Si相,除此之外,合金中还含有少量的具有单斜结构的θ-Al13Fe4。挤压态合金在室温下的抗拉强度(σb)达到了415 MPa,屈服强度(σ0.2)达到了345MPa,延伸率(δ5)可达到22.5%;随着拉伸温度的升高,合金的拉伸强度和屈服强度都下降,而合金的延伸率则呈现"下降-上升"的中温脆性规律。  相似文献   

7.
采用激光选区熔化成形(selective laser melting,SLM)技术制备TCGH(TC4+GH4169)复合材料,探究TCGH钛合金复合材料的最佳成形工艺参数,并研究沉积态试样和热处理试样的显微组织与力学性能。结果表明:TCGH钛合金复合材料的最佳工艺参数为扫描速率900 mm/s、激光功率150 W,致密度达到99.5%以上。GH4169粉末的添加改变了TC4钛合金材料的固态相变行为,沉积态组织呈现明显高温凝固特征,使得逐行扫描搭接和逐层扫描堆积成形特征变得明显,沿打印方向原始粗大柱状β晶粒尺寸明显减小,复合材料抗拉强度提升。与沉积态试样相比,950℃热处理后,试样显微组织转变为近等轴组织,同时随着热处理温度上升,第二相的回溶导致复合材料的固溶强化作用占主导地位,使得复合材料抗拉强度和塑性均得到提升。  相似文献   

8.
研究了不同热处理工艺对高Nb-TiAl合金板材的显微组织及力学性能的影响。采用铸锭原料直接包套热轧制备的板材主要由残余粗化的片层团、再结晶γ晶粒和沿轧制方向带状分布的β相组成。通过不同的热处理工艺可以消除残余片层和β相,分别获得典型的双态组织、近片层组织和全片层组织。对热处理后具有双态组织的板材进行了室温和高温力学性能测试,结果表明:经热处理后,热轧板材的室温延伸率达到0.5%,屈服强度和抗拉强度分别提高到646MPa和691MPa,与铸态相比,其室温强度和塑性得到了改善,在850-900℃之间材料发生韧脆转变,并且相应断裂机理从脆性的穿晶断裂转变为孔洞的形核和聚集。  相似文献   

9.
Sr对AM50显微组织和力学性能的影响   总被引:1,自引:1,他引:0  
研究了不同含量Sr对AM50合金微观组织和力学性能的影响.结果表明,添加Sr后,AM50合金铸体组织β-Mg17Al12变得细小,晶粒明显细化;Sr基本上与Al结合生成高熔点、高稳定的Al4Sr相,能够强化晶界并阻碍位错滑移,从而强化合金.适量的Sr明显提高了室温下合金的屈服强度和抗拉强度,而且不影响合金的延伸率,而过量的Sr会导致AM50延伸率和轻度的降低.含0.5%Sr的铸态合金可得到最高抗拉强度233MPa,屈服强度90MPa,延伸率16.3%的性能.  相似文献   

10.
利用激光选区熔化(SLM)技术制备了原位自生TiB2纳米陶瓷颗粒增强Al-Si基复合材料,并对成形后的TiB2/Al-Si复合材料进行不同的热处理。通过XRD物相分析、SEM微观组织观察、电子背散射衍射(EBSD)、EDS元素扫描分析和力学拉伸试验等对TiB2/Al-Si复合材料的微观组织进行观察和力学性能测试。研究表明,在原位自生TiB2纳米陶瓷颗粒和SLM快速凝固特性的共同作用下,SLM成形的原位自生TiB2/Al-Si复合材料具有超细晶结构,平均晶粒尺寸为1.1 μm;TiB2/Al-Si复合材料的力学性能优异,屈服强度为262 MPa,抗拉强度为435 MPa,延伸率为11.88%。对比经不同热处理的TiB2/Al-Si复合材料,直接时效处理(150℃/12 h)的TiB2/Al-Si复合材料性能最优,抗拉强度达到488 MPa,提高了53 MPa,延伸率降低至7.2%。  相似文献   

11.
采用螺旋选晶法制备DD6合金单晶试棒,标准热处理后在980℃长期时效2000 h,研究980℃长期时效对DD6单晶高温合金的组织演化及力学性能的影响.结果表明:随着长期时效时间的延长,合金中γ'相的尺寸增大,2000 h后γ'相尺寸约为1μm,没有TCP相析出,合金具有较好的组织稳定性.2000 h长期时效试样在980℃/243 MPa下持久寿命为180.16 h,为热处理态的56.3%;在1070℃/130 MPa下持久寿命为144.42 h,为热处理态的35.31%,断裂模式均为微孔聚集型断裂;相比热处理态的合金,2000 h长期时效态试样760℃的抗拉强度和屈服强度分别降低5.55%和5.88%;980℃的抗拉强度和屈服强度分别下降11%和10.59%.  相似文献   

12.
目的 为了设计出成本低、性能优异的AlCrFe2Ni2高熵合金,并探究轧制处理对该合金微观组织与力学性能的影响。方法 使用真空电弧熔炼炉熔炼AlCrFe2Ni2合金样品,采用冷轧的方式进行塑性加工,轧制总下压量为60%,结合相图计算、X射线衍射、扫描电子显微镜等分析测试方法研究AlCrFeNi合金体系的相形成规律,以及合金变形前后微观组织、力学性能的变化情况。结果 铸态和冷轧态的AlCrFe2Ni2高熵合金由FCC_A1主相和BCC相构成,BCC区域由编织状的BCC_A2相和BCC_B2相构成。铸态下的屈服强度和抗拉强度分别为681 MPa和1 208 MPa。冷轧后的合金样品硬度和拉伸强度明显提高,经60%下压量的冷轧变形后,合金的屈服强度和抗拉强度分别提升到1 433 MPa和1 620 MPa,但伸长率由铸态的9.5%下降到轧态的2.0%。结论 相组成参数计算结合相图计算(CALPHAD)能够有效预测合金的相组成,轧制处理能够有效改善合金的力学性能。  相似文献   

13.
为了制备高力学性能细晶Mg-6Al合金坯料,采用金相显微镜、材料拉伸实验机等手段对Mg-6Al合金铸坯进行等径道角挤压实验研究.并利用热处理工艺对挤压后材料进行处理,研究热处理工艺参数对材料力学性能的影响规律.结果表明,Mg-6Al合金的铸坯的抗拉强度为196.4MPa,延伸率为12.6%.经过等径道角挤压的Mg-6Al合金坯料的晶粒被大大细化,其晶粒尺寸由铸坯的140μm左右细化到8μm左右.其力学性能有很大提高,抗拉强度由196.4MPa提高到308.2MPa;延伸率由12.6%提高到30.6%.等径道角挤压工艺是一种非常好的制备高力学性能、细晶Mg-6Al合金的工艺方法.固溶和人工时效热处理工艺对等径道角挤压的Mg-6Al合金坯料的强度有较大影响,对延伸率影响较小.  相似文献   

14.
AlSi10Mg合金具有高比强度、高耐磨性等优良特点。由于其成分接近共晶点,成形性能良好,被广泛应用于激光选区熔化技术。然而其热处理制度仍然沿用传统铸态合金的热处理规范,影响了其性能的充分发挥。本工作采用激光选区熔化技术制备了AlSi10Mg合金,并研究了沉积态和后续热处理过程中组织演化规律及其对室温力学性能的影响机制。研究发现:沉积态组织由沿沉积方向生长的α-Al柱状枝晶及枝晶间网状Al-Si共晶组成,具有强烈的〈100〉方向织构,沉积层由三部分组成,分别是细晶区、粗晶区及热影响区,抗拉强度389.5 MPa,伸长率4%。退火过程中,共晶Si破碎、球化,基体中过饱和Si不断析出长大。当退火温度从200 ℃提高到500 ℃时,Si颗粒发生Ostwald熟化,平均尺寸增长了23倍。经过300 ℃和500 ℃退火处理后,试样抗拉强度分别为287.0 MPa和268.0 MPa,但伸长率分别提高到10.3%和17.2%。  相似文献   

15.
目的 研究不同热处理制度对激光选区熔化(SLM)AM247LC合金微观组织和力学性能的影响规律。方法 对激光选区熔化制备的AM247LC合金分别进行900℃/16h的直接时效热处理和1 210℃/30 min+1 050℃/30min+950℃/16h的固溶时效热处理,通过OM、SEM、EBSD、XRD等表征手段研究合金热处理前后的晶粒组织、碳化物及析出相等微观组织的变化,并对打印态及不同热处理态样品的室温拉伸性能进行测试,以表征热处理对其力学性能的影响行为。结果 打印态AM247LC合金中存在大量粗大柱状晶和细小晶粒组织;直接时效热处理(900℃/16 h)后的AM247LC合金晶粒组织与打印态类似,但析出了大量γ’强化相;固溶时效热处理(1 210℃/30 min+1 050℃/30 min+950℃/16 h)后,AM247LC合金发生了再结晶,形成大量退火孪晶,并且析出沿晶界分布非连续的微米级碳化物及大量γ’强化相。合金打印态的屈服强度为846.5 MPa,断裂伸长率可达19.6%;直接时效热处理后,合金屈服强度为1 042.8 MPa,断裂伸长率明显降低,仅为11.2%;固溶...  相似文献   

16.
通过选区激光熔化(SLM)技术3D打印制备了18Ni300模具钢棒状试样,并对其进行了840℃固溶+490℃×6h时效热处理,分别对热处理前后试样的显微组织及力学性能进行了研究。结果表明:3D打印18Ni300模具钢的致密度高,相对密度接近100%;未经过热处理的3D打印试样显微组织由细小的板状马氏体和残余奥氏体组成,抗拉强度和屈服强度较低;经热处理后试样的显微组织形貌呈均匀分布的长条状,抗拉强度、屈服强度和硬度明显升高,塑性降低。  相似文献   

17.
用Al-10Sr变质剂和Al-5Ti-B细化剂处理A356铝合金熔体,并结合挤压铸造和T6热处理工艺,研究变质细化与热处理对A356铝合金挤压铸造件的组织和性能的影响规律。结果表明,随着Al-10Sr变质剂加入量的增加,共晶Si的形貌由片状和长杆状变为颗粒状和蠕虫状,α-Al的晶粒尺寸先减少后增大。当Al-10Sr的加入量(质量分数)为0.3%时,挤压铸造成形件的最优抗拉强度、屈服强度和延伸率分别为221.3 MPa、104.5 MPa和10.3%。Al-10Sr变质能提高形核率、细化α-Al晶粒尺寸和改变共晶硅形貌,使铸造件的力学性能提高。随着A-5Ti-B的增加,晶粒尺寸先降后增,力学性能先增后降。Al-5Ti-B的加入量为0.6%时,最优抗拉强度、屈服强度和延伸率分别为215.6 MPa、106.6 MPa和9.0%。T6热处理(固溶540℃/4 h+时效190℃/4 h)使屈服强度和抗拉强度显著提高和延伸率降低。经过0.6% 的Al-5Ti-B细化处理,T6处理挤压铸造件的最优的抗拉强度、屈服强度和延伸率分别为297.5 MPa、239.3 MPa和8.0%。共晶硅的球化和细化、成形件成分的均匀化以及Mg2Si强化相在基体中弥散析出,是热处理后构件力学性能提高的主要原因。  相似文献   

18.
本工作通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉伸试验机对铸态和挤压态Mg-4SmAl-0.3Mn-x Zn(x=0、1、2、3)(质量分数)合金的微观组织及力学性能进行了研究。铸态、固溶态合金中观察到了Mg-Al-Sm三元析出相,它是一种长条形基面析出相,具有六方结构,其中a=0.556 nm,c=0.521 nm。该相与镁基体的位向关系为:[0001]_(Mg-Al-Sm)‖[0001]_(α-Mg),■_(Mg-Al-Sm)‖■_(α-Mg)。三种元素的原子比为Mg∶Al∶Sm=98.73∶0.71∶0.56。铸态合金中Mg-4Sm-Al-0.3Mn-3Zn合金具有最佳的拉伸性能,其屈服强度、抗拉强度和延伸率分别为96 MPa、138 MPa和7.2%。挤压态合金中Mg-4Sm-Al-0.3Mn-2Zn合金具有最佳的拉伸性能,其屈服强度、抗拉强度和延伸率分别为269 MPa、298 MPa和16%。  相似文献   

19.
采用激光选区熔化(SLM)成形技术制备GH4169合金,利用金相显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM)等分析热等静压/热处理工艺对SLM成形GH4169合金微观组织及拉伸性能的影响规律。结果表明:沉积态合金组织中,沿沉积方向的晶粒为柱状晶,晶粒内枝晶组织细小,枝晶间分布大量Laves相;经热等静压后,合金中的气孔及Laves相可被有效消除,沿沉积方向的晶粒转变为等轴晶;经980℃/1 h固溶处理后,合金中的晶界处析出大量短棒状δ相。热等静压/热处理后GH4169合金试样的室温及650℃拉伸性能均高于锻件标准要求的力学性能指标,且温度对断裂方式影响不大。  相似文献   

20.
研究了铸态AZ91D镁合金在等径角挤压(Equal Channel Angular Extrusion,ECAE)后的室温力学性能和微观组织特征.在力学性能方面,铸态AZ91D镁合金经过1道次ECAE变形后,室温力学性能(屈服强度、抗拉强度、延伸率、弹性模量)由86.3 MPa,146.3 MPa,1.84%,42.5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号