首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
党斐  赵炜  陈曦  刘益伦 《复合材料学报》2017,34(5):1069-1074
为探究表面改性对活性炭孔结构及热电转换性能的影响,使用HNO_3和KOH在不同条件下对活性炭进行表面改性,用N2吸附法和XRD图谱表征活性炭改性前后孔结构和石墨化程度的变化。结果表明,改性后活性炭的比表面积和孔容提高,平均孔径减小,并存在石墨晶体结构。干法改性活性炭的比表面积和总孔容由1 077.880m~2/g和0.763cm~3/g分别增加到1 635.268m~2/g和1.128cm~3/g,并且微孔的孔容增加。改性处理可以去除活性炭中的杂质。分别以改性前后活性炭为材料制备固体电极,KCl为电解液,测试活性炭电极的热电转换性能,发现改性后活性炭具有更高的热电转换性能。  相似文献   

2.
氨水改性活性炭纤维吸附苯乙烯的性能   总被引:5,自引:0,他引:5  
主要研究采用氨水对活性炭纤维ACF表面进行改性,制备了3种不同的改性ACF,测定ACF孔结构和表面酸碱基团,并测定了苯乙烯在改性ACF床层的吸附透过曲线,讨论了改性ACF的孔结构和表面酸碱基团对其吸附性能的影响.结果表明,与原始ACF相比,经氨水改性后的活性炭纤维ACF其表面碱性基团含量、孔容及其比表面积增加,从而明显提高了对苯乙烯的吸附容量;用浓度为6mol/L的氨水改性的ACF2其微孔孔容及其比表面积最大,其对苯乙烯的吸附容量也最大.  相似文献   

3.
通过水蒸气活化法制备了聚苯乙烯基球形活性炭,并研究了其对二苯并噻吩(DBT)的吸附性能.采用扫描电镜(SEM)、N2吸附、热重分析(TG)以及液相吸附试验考察了球形活性炭的结构特征.结果表明:以苯乙烯离子交换树脂为原料,通过水蒸气活化法,可以得到比表面积979m2/g~1672m2/g的球形活性炭.其中,BET比表面积和孔容随活化时间和水蒸气流量的增加而增大,而孔径小于0.7 nm的窄微孔却减小.球形活性炭对DBT的吸附量可达109.36mg/g,吸附量与比表面积和总孔容关系不大,而与小于0.7nm的窄微孔成正比.球形活性炭在对DBT的吸附过程中存在不可逆吸附.球形活性炭所含窄微孔的孔容越大,脱附所需要的温度越高,不可逆吸附量越大.  相似文献   

4.
用质量分数65%的浓硝酸分别浸渍炭化前和炭化后的蚕茧,然后在不同温度条件下进行热处理,得到改性活性炭纤维材料。利用低温氮气吸附-脱附仪、傅里叶变换红外光谱仪、扫描电子显微镜和透射电子显微镜对改性前后活性炭纤维材料的孔结构和电化学性能进行分析表征。用循环伏安、交流阻抗和恒流充放电等测试方法研究了活性炭纤维电极材料的炭化温度和炭化顺序对中孔炭孔结构及电化学性能的影响。结果表明:随着炭化温度的升高,活性炭纤维电极材料比表面积和孔容逐渐增加;炭化温度为600℃时,采用先炭化后吸附方法制备的活性炭纤维电极材料比电容可以达到124.56F/g,比先吸附后炭化制备的样品比电容(82.69F/g)提高了约51%。  相似文献   

5.
甲苯是一种有毒的挥发性有机物,会对环境造成严重危害。活性炭吸附法是处理甲苯的经典工艺,但普通活性炭通常存在灰分高、吸附选择性差、孔径分布不均匀及表面官能团限制等问题。为了更高效、更有针对性地吸附目标物质,需要对活性炭进行改性处理。研究人员从选择合适的改性物质、处理工艺、操作条件及改性物剂量等方面不断尝试来确定最佳改性方法。目前活性炭的改性方法主要有酸碱改性法、负载杂原子和化合物改性法、低温等离子体改性法、微波改性法等。酸碱改性法通过去除活性炭中酸碱可溶性物质来降低灰分含量,从而扩大其比表面积和孔道容积。相较酸改性,碱改性可提高活性炭表面碱性官能团数量,增强其表面π-π色散力,使活性炭整体的非极性提升,有利于其吸附弱极性的甲苯。负载杂原子和化合物改性法是利用负载的杂原子和化合物与甲苯之间的络合作用来提高活性炭的吸附性能,但引入的杂原子和化合物含量过高时易堵塞孔道,降低活性炭对甲苯的吸附容量。低温等离子改性法具有能耗低、使用范围广和效率高等优点,是一项去除污染物的环保新技术,不仅可改变活性炭表面的化学性质,也会对其界面物性产生影响,在活性炭表面处理方面显示出广阔的应用前景。微波改性法利用微波能量在活性炭表面产生更多的活性位点,配合通入的还原性气体还能分解活性炭表面的酸性官能团,增强其碱性。微波加热可以去除活性炭孔道内部的杂质,但随着温度的升高,会造成炭骨架收缩,不利于吸附的进行。其中微波辐照功率、改性物的浓度及辐照时间是微波改性法中需要控制的关键因素。本文综述了活性炭及各种改性活性炭吸附甲苯的研究进展,通过吸附等温模型对比分析了不同改性活性炭对甲苯的吸附性能及吸附机理。研究表明,活性炭的比表面积、孔道结构及表面化学性质等是影响吸附性能的主要原因。本文还探讨了不同改性方法对活性炭理化性质的影响,对于提高活性炭的吸附效率具有重要意义,也为研制高效吸附甲苯的改性活性炭奠定了理论基础。最后,提出了活性炭研究中亟待解决的问题与其今后的发展方向,为后续研究和工业生产应用提供参考。  相似文献   

6.
采用H_2O_2-HNO_3混合液对芋叶柄基活性炭进行轻度表面氧化改性,再利用表面负载离子的方法对其表面负载Cu~(2+),制备负载铜芋叶柄基活性炭。以亚甲基蓝脱色率为评价指标,分析2次改性过程对芋叶柄基活性炭吸附性能的影响,利用低温N_2吸附、傅里叶红外光谱(FT-IR)等实验技术,对芋叶柄基活性炭的孔结构与性能进行表征与分析。结果表明,经氧化改性后芋叶柄基活性炭的比表面积及孔径增大,BET比表面积为922.600m2/g,孔容0.068cm3/g,孔径18.471nm,对亚甲基蓝脱色率为74.38%。经2次改性后负载铜芋叶柄基活性炭对亚甲基蓝脱色率达93.44%,吸附能力得到进一步提高。  相似文献   

7.
为了改善活性炭吸附性能,利用硫脲溶液在超声波辅助条件下对活性炭进行改性,探究了不同改性及吸附条件下的吸附金的效果,利用场发射扫描电镜(SEM)及傅里叶红外光谱仪(FT-IR)对改性前后的活性炭孔结构和表面特性进行表征。结果表明,最佳改性条件为3 mol/L的硫脲溶液,温度为95~100℃,时间为3 h;吸附环境适宜pH值为2~2.5,投入0.5 g改性炭,吸附时间为1.5 h,吸附率达到97%。表征发现,改性后活性炭孔结构明显,比表面积增大。硫脲的加入改变了原有基团的波谱峰,同时产生了新基团,如—NH_2、■、C—H、■等,增强炭的吸附。改性炭的吸附等温线符合Langmuir与Freundlich等温线模型,表明改性炭的吸附模式是以单分子层吸附为主与多层吸附共同作用的吸附模式,拟合后得到的饱和吸附容量为0.208 mmol/g,实际得到的饱和吸附容量为(0.194 mmol/g),吸附效果较好。  相似文献   

8.
文婕  孙文晶  杨文  王宁  储伟 《功能材料》2012,43(13):1770-1773,1777
采用3种不同的氧化改性方法对MSC-30活性炭进行了氧化改性。结果表明,随着氧化程度逐渐加深,活性炭的比表面积(微孔孔容)逐渐降低,而表面含氧基团却逐渐增加。深度氧化有利于羧基的形成。对于单组份氮杂环化合物喹啉、吲哚和咔唑的吸附,原始活性炭对咔唑的吸附量最高,可达到1.104mmol/g。氧化后的活性炭样品保持对咔唑的吸附量,同时显著提高对喹啉和吲哚的吸附量。其中,对喹啉和吲哚的最高吸附量分别达到1.157和1.024mmol/g。活性炭对含3组分氮的模型油的吸附结果进一步表明3种氧化改性方法均提高了活性炭的吸氮量,尤其有利于碱性氮化物的吸附。  相似文献   

9.
吸附是一种极具应用前景的汽油深度脱硫分离技术。采用硝酸氧化、焙烧、负载金属等方法对活性炭进行改性,利用静态实验研究了改性活性炭对模拟汽油中噻吩的吸附脱除性能。结果表明硝酸氧化可以增加活性炭表面酸性基团的量,提高脱硫性能;N2气氛下焙烧后吸附剂脱硫效果明显优于未处理活性炭;活性炭表面负载Fe、Zn、Cu、Ni金属离子改性中,Fe离子改性活性炭脱硫效果最好。根据上述实验结果,进行了活性炭复合改性实验,得出68%硝酸氧化后再进行Fe离子负载,吸附剂脱硫率最高,噻吩的脱硫率可达到85%。  相似文献   

10.
采用HNO3、H2O2和O3对商品活性炭进行表面改性处理,考察了改性处理对活性炭表面基团、负载TiO2以及所形成的TiO2/活性炭复合光催化剂性能的影响。利用傅里叶红外光谱(IR)、X射线光电子能谱(XPS)、扫描电镜(SEM)及氮气吸附等手段对材料进行了表征。结果表明,3种改性方法均可有效提高活性炭载体表面的含氧官能团数量,但是对活性炭的比表面积和孔容影响不大;H2O2和O3对活性炭载体改性后可以提高对钛前驱体的吸附性能,HNO3改性有利于TiO2颗粒在活性炭表面的分散。使用改性后的活性炭作为载体制备的TiO2/活性炭光催化降解甲基橙的性能均高于未改性的TiO2/活性炭催化剂,其中以HNO3改性后的TiO2/活性炭活性最高。  相似文献   

11.
考察了3种不同孔结构的球形活性炭(氢氧化钾和水蒸汽活化的苯乙烯基球形活性炭以及沥青基球形活性炭,PACSKOH,PACSJsteam、ACSpitch)对二苯并噻吩(DBT)的吸附行为.结果表明,DBT在球形活性炭上的吸附符合Freundlich吸附等温线,吸附容量与比表面积无关,而与孔径<0.8nm的超微孔孔容相关.PACSKOH中微孔和<0.8nm的超微孔含量最多,对DBT的吸附容量最大,它的吸附容量分别是PACSsteam和ACSpitch的1.4和1.6倍.球形活性炭对DBT的吸附符合准二级动力学方程,PACSsteam中孔和大孔径的微孔含量最多,初始吸附速率最大,吸附半衰期最短;ACSpitch中孔含量少,初始吸附速率最小;PACSKOH<0.8nm的超微孔含量多,DBT需要沿孔壁方向取向,并平行孔壁进入超微孔,导致吸附半衰期最长.  相似文献   

12.
以负载醋酸锌的废活性炭为原料,采用微波法得到再生活性炭产品吸附甲苯.测定了20、30和40℃时活性炭吸附甲苯的吸附等温线和穿透曲线,并用Langmuir和Freundlich方程处理实验数据,Lang-muir方程能很好地拟合实验数据,计算了甲苯在活性炭上的最大饱和吸附量(qm)为273.23mg/g、平均吸附热(△H...  相似文献   

13.
为了研究单一金属盐和复合金属盐改性活性炭材料对SO_2吸附性能的影响,以活性炭(activated carbon,AC)为载体,通过水热法制备ZnO/AC复合材料、Fe_2O_3/AC复合材料、ZnFe_2O_4/AC复合材料以及空白AC材料。采用场发射扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FTIR)、物理吸附仪(BET)及X射线光电子能谱分析仪(XPS)对复合材料结构及化学组分进行表征,并且在常温条件下考察活性炭复合改性前后对模拟烟气中SO_2的吸附性能。结果表明,复合改性后活性炭材料成功负载金属氧化物活性组分,比表面积孔容减小,孔径增大并且对SO_2的去除效率显著提高。通过AC、ZnFe_2O_4以及4种复合材料脱硫效率的比较发现,负载ZnFe_2O_4的活性炭材料的脱硫效率最高,其比表面积和孔容分别为435.9m~2/g、0.37cm~3/g,脱硫性能试验中样品的击穿时间为136.0min,硫容达到168.3mg/g。  相似文献   

14.
新型CO2-PSA吸附剂的性能研究   总被引:6,自引:0,他引:6  
改性后的活性炭表面形成特殊的吸附中心,我们研究二氧化碳在其表面的吸附穿透曲线及压力和解吸时间对吸附性能的影响,经过对Ca^2 ,Mg^2 ,Cu^2 改性的活性炭吸附剂的研究,我们得出Cu^2 改性的果壳基活性炭具有很好的对二氧化碳的吸附可逆行,而且可逆吸附量受压力变化的影响在一定压力时十分明显,因此是一种优良的CO2-PSA吸附剂。  相似文献   

15.
考察了沥青基球形活性炭(PSAC)的孔结构与CO2吸附容量间的内在关系及其脱附性能.采用N2吸附法分析PSAC的孔结构,由穿透曲线测试其对CO2的平衡吸附量.实验结果表明:在CO2/N2混合气氛下,活性炭对CO2的吸附容量与孔径小于1nm的微孔比表面积呈线性关系;当PSAC担载5%的三聚氰胺后,对CO2(15%)的平衡吸附量由0.91mmol/g增加到1.15mmol/g,提高了26.3%;采用抽真空脱附时,循环脱附效率为74.6%,而电解吸-抽真空耦合脱附工艺可使CO2的循环脱附效率接近100%.  相似文献   

16.
沥青基球状活性炭对胆红素 吸附性能的初步研究   总被引:3,自引:0,他引:3  
研究了三种具有不同孔径结构的沥青基球状活性炭对胆红素的吸附行为,结果三种沥青基球状活性炭对胆红素均具有较好的吸附性能,平衡吸附率达90%以上,随沥青基球状活性炭中中孔含量的增加,其对胆红素吸附速率加快,达到吸附平衡的时间缩短;且对结合态胆红素的吸附量及吸附速度较游离态氏。  相似文献   

17.
沥青基球状活性炭对胆红素吸附性能的初步研究   总被引:11,自引:7,他引:4  
研究了三种具有不同孔径结构的沥青基球状活性炭对胆红素的吸附行为,结果表明三种沥青基球状活性炭对胆红素均具有较好的吸附性能,平衡吸附率达90%以上。随沥青基球状活性炭中中孔含量的增加,其对胆红素吸附速度加快,达到吸附平衡的时间缩短;且对结合态胆红素的吸附量及吸附速度都较游离态低。  相似文献   

18.
目的 制备武器装备贮存微环境用单组分的二氧化硫吸附材料。方法 采用双氧水对椰壳活性炭进行表面改性,研究改性活性炭孔隙结构、表面化学性质的变化及其对二氧化硫吸附性能的影响。结果 活性炭存在微孔和中孔,改性后活性炭比表面积略有增加,平均孔径减小。双氧水与活性炭反应起到刻蚀作用,在活性炭表面产生了纳米尺度的网孔结构,降低了活性炭表面碳微晶有序程度,同时双氧水与活性炭反应时起到了氧化作用,提升了活性炭表面氧元素和含氧官能团含量。体积分数为20%的双氧水改性活性炭的吸附容量最高,达到154.15 mg/g,约为改性前的5倍。结论 双氧水对活性炭经表面改性后,产生了纳米尺度的孔隙,并提升了活性炭表面含氧官能团,在两者协同作用下显著提升活性炭对SO2吸附性能,具有良好的装备应用前景。  相似文献   

19.
活性炭表面改性及其对CO_2吸附性能的影响   总被引:2,自引:0,他引:2  
采用硝化-还原法对高比表面积活性炭进行改性以提高其对CO2的吸附性能。利用氮吸附、FT-IR、元素分析、XPS等方法对改性前后的样品进行表征,并通过高压吸附装置测试CO2吸附性能。结果表明,改性样品对CO2的吸附量在室温下和319.15K下分别为17.72mmol/g和14.01mmol/g,比原样分别提高了49%和70%(单位比表面积吸附量的增加幅度),这可能与改性样品的表面连接了碱性较强的伯氨基等含氮官能团有关。改性样品经4轮缓和条件下的吸附-脱附循环后,吸附量未明显下降,表明改性样品仍以物理吸附为主。  相似文献   

20.
以商用活性炭为原料,采用20%硝酸液相氧化处理后,制备了硝酸改性活性炭。采用低温N_2吸附法表征了活性炭的孔结构性质,采用FTIR、Boehm滴定法进行了表面性质表征,测定、比较了商用活性炭和不同温度条件下的硝酸改性活性炭为原料所制备电极的循环伏安、恒定电流充放电、交流阻抗等电化学性能,探讨了硝酸改性活性炭电极的电容产生机理。实验表明,经硝酸氧化处理后,活性炭的比表面积和孔容略微增加,平均孔径稍增大,含氧官能团数量有所增加。由于氧化处理后活性炭材料赝电容的增加,相比商用活性炭电极的比电容量89.61F·g~(-1),硝酸改性活性炭电极比电容量增大到106.56 F·g~(-1),并表现出较好的功率特性、容量特性和较小的阻抗,同时具有大电流放电的特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号