首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
人脸检测的研究对与日常生活很好的实用价值,如人脸体温检测,视频监控等。实验通过YOLOv5方法对用户进行训练,并选用YOLOv5系统中网络深度最大和宽带最少的YOLOv5s模型,基于重参数化结构,提升了检测的准确率,且其具有速度快,体积小的优点。在人脸检测出后基于face_recongnition库进行关键点定位。通过实验结果可以看出,检测较为准确,具有良好的应用价值。  相似文献   

2.
3.
张伟  钱沄涛 《信号处理》2019,35(3):507-515
人脸关键点检测是计算机视觉中的典型问题之一,对于人脸三维重建、表情识别、头部姿态估计、人脸跟踪等有重要影响。目前基于深度神经网络的模型在人脸关键点检测性能表现最为突出,已被广泛采用。但是现有关键点检测深度神经网络结构设计越来越复杂,对于训练和测试需要的计算和存储资源要求越来越高。本文提出一种新的精简的关键点检测网络结构以代替现有的网络结构。相对其他网络结构,精简网络只包含一个特征提取模块,以及由几层反卷积层组成的上采样模块。此外我们在网络结构中加入对人脸所有关键点的全局约束,以减少预测离群点的产生。实验表明引入全局约束的精简网络结构在300-W数据集上取得的检测性能超出了目前典型深度神经网络检测模型。   相似文献   

4.
5.
路面损伤检测是支持基础设施检测的重要任务,及时、准确、自动地检测路面损伤,对于经济有效的道路养护是必要的。针对道路检测中存在漏检问题,提出一种改进的YOLOv5s的道路检测算法。首先,用CBAM注意力机制模块替换主干网络中C3模块,在关注通道特征的同时关注位置信息,加强网络对重要信息的提取能力;其次用EIoU替换GIoU损失函数,解决了GIoU误差大的同时提高了收敛速度和回归精度;最后,为使细微损伤得到有效检测,在原始网络中增加极小目标的检测的输出,使三输出变成四输出,提高模型识别率。从精度和召回率的结果可知,改进后的YOLOv5s算法平均检测精度为96.9%,相较于原YOLOv5s算法提高了7.6%。能够有效检测出道路路面损伤,且其准确率优于其他的道路检测算法。  相似文献   

6.
石墨化车间火焰识别监测对企业安全生产、污染物治理及节约能耗有着重要意义。针对现有深度学习目标检测模型存在对小火焰的识别精度较低,模型参数较多,不适用于嵌入式设备等问题,提出一种改进的YOLOv5轻量级石墨化火焰检测模型。采用EfficientViT模型为主干网络,在减少模型整体参数量的同时提高注意力的多样性。其次,使用(normalized wasserstein distance,NWD)改进损失函数,提高对小火焰的检测性能。经实验验证,所提出的模型查准率为90.2%,AP@0.5为94.3%。检测精度与YOLOv5网络相当的同时,参数数量减少了47%,模型大小减少了49%,具有识别精度高、占用内存少的优势。  相似文献   

7.
缺陷检测是带钢生产过程中不可缺少的工序,现有检测方法普遍存在检测精度较低、实时性差等问题。为解决上述问题,本文提出了一种基于轻量化YOLOv3的快速缺陷检测方法。MobileNetv2作为主干网络并用两个尺度的特征图进行输出,保证了网络模型的轻量化;将改进后的注意力模块融合进特征金字塔网络(feature pyramid network, FPN),同时结合空间金字塔池化模块(spatial pyramid pooling, SPP),以提高算法对缺陷的学习能力;使用K均值聚类算法获得更优的先验框,并且使用CIoU(complete-intersection over union)对损失函数进行优化,进一步提升网络性能。提出的方法在带钢缺陷数据集上检测速度为70.8 FPS;模型参数量为7.1 MB,仅为YOLOv3的3.02%。实验结果表明本文所提方法能够在保证精度的同时实现对缺陷的快速检测,具有良好的生产线部署能力。  相似文献   

8.
为了提高汽车涂胶缺陷的检测精确率、保证速度与质量,提出基于Yolov3的汽车涂胶缺陷检测方法.该方法结合迁移学习算法解决涂胶缺陷数据集少的问题、并针对本文数据集进行K-M重新聚类产生适应本文数据集的anchor box、最后增加网络预测尺度,解决yolov3对小目标检测性能较差问题.改进Yolov3算法在测试集上的平均...  相似文献   

9.
张佳欣  王华力 《信号处理》2021,37(9):1623-1632
针对目标检测算法直接应用于SAR图像舰船检测数据集时数据训练不充分、鲁棒性差等问题,本文提出了一种改进YOLOv3的SAR图像舰船目标检测方法,从改进网络训练策略的角度出发,提升算法对不同舰船目标的适应性,优化算法的检测性能。改进主要包括两个方面:一方面本文在YOLOv3的基础上引入了ATSS(Adaptive Training Sample Selection)正负样本的分配方法,提高YOLOv3中正负样本选择的质量,优化网络训练。另一方面本文设计了基于特征层的锚框超参数优化方法,使锚框更加贴合各检测层数据集样本分布,从而使训练模型更好的收敛。本文分别在SSDD、SAR-Ship-Dataset数据集上进行了实验,验证了其有效性。   相似文献   

10.
针对密集人群图像中人脸检测普遍存在的遮挡及中小尺度目标特征少等问题,本文提出了一种改进YOLOv3的方法.该方法在YOLO网络中加入改进的密集卷积网络Res-DenseNet,用于网络特征的加强,结合上下文信息,使模型能学习到更多人脸特征,从而提高遮挡人脸的检测精度;对于中小尺度人脸特征不足问题,采用从浅层网络引出特征...  相似文献   

11.
YOLOv3算法在单一物体目标检测时使用Darknet53作为主干,网络出现冗余现象,导致参数过多,检测速度变慢,传统的边界框损失函数影响检测定位准确性。针对这一问题,文中提出了改进YOLOv3算法的行人检测方法。通过构造以Darknet19为主干网络多尺度融合的新型网络,加快训练速度和检测速度,还通过引入广义交并比损失函数来提高检测精确度。实验结果表明,在行人检测数据集如INRIA行人数据集中,相比于原始算法,文中所提算法的精确度提高了5%。和Faster R-CNN相比,在保证准确率的情况下,采用文中算法使单张图片的检测速度达到了每张0.015 s。  相似文献   

12.
针对瞳孔区域屈光度识别准确率低、检测效率低等问题,本文提出一种基于改进YOLOv3深度神经网络的瞳孔图像检测算法。首先构建用于提取瞳孔主特征的二分类检测网络YOLOv3-base,强化对瞳孔特征的学习能力。然后通过迁移学习,将训练模型参数迁移至YOLOv3-DPDC(Deep Pupil Diopter Classify),降低样本数据分布不均衡造成的模型训练困难以及检测性能差的难题,最后采用Fine-tuning调参快速训练YOLOv3多分类网络,实现了对瞳孔屈光度快速检测。通过采集的1200张红外瞳孔图像进行实验测试,结果表明本文算法屈光度检测准确率达91.6%,检测速度可达45 fps,优于使用Faster R-CNN进行屈光度检测的方法。  相似文献   

13.
刘建男  聂凯 《电光与控制》2021,28(9):30-33,69
针对目标检测领域对高检测精度和高检测速度共存的需求,提出了一种单阶段目标检测算法即性能平衡的YOLO算法(B-YOLO),该算法首先引入空间注意力机制,利用多尺度最大池化层增大感受野范围;然后采用跨阶段局部连接结构和直通层优化主干网络结构,改善计算效率;最后在多尺度检测结构中增加自下而上的路径,并使用拼接操作进行横向连...  相似文献   

14.
梁文哲  冯阳凯  王锐  周超  蔡炯 《信号处理》2022,38(1):109-117
掌握昆虫迁飞规律对于农业防治和生态学研究具有重大意义,雷达正是检测昆虫迁飞最有效的手段.昆虫回波弱,传统的恒虚警检测(Constant False Alarm Rate,CFAR)算法在低信噪比(Signal To Noise Ratio,SNR)时的检测性能下降;同时昆虫目标体积小、飞行速度慢,在距离维和多普勒维的扩...  相似文献   

15.
针对现有的车辆检测网络模型大、不易部署的问题,提出一种基于改进YOLOv3-tiny的轻量级车辆检测网络.改进YOLOv3-tiny的特征提取网络,提高车辆检测的速度和准确性,将空间金字塔池化(Spatial Pyramid Pooling,SPP)融合到网络中,进行特征的拼接,提高网络的学习能力,利用距离交并比(Di...  相似文献   

16.
针对小型智能侦察无人机机载平台存在的计算力受限、检测速度较慢的问题,提出了一种基于YOLOv3改进的目标检测算法.首先引入深度可分离卷积改进YOLOv3的骨干网络,降低网络的参数和计算量,提高算法的检测速度,再根据机载视角下目标形状的特点,预置K-means产生先验框的初始聚类中心,并在边框回归中引入CIoU损失函数,...  相似文献   

17.
李慕锴  张涛  崔文楠 《红外技术》2020,42(2):176-181
针对红外图像中行人小目标检测识别率低、虚警率高的问题,研究了当下效果最好的YOLOv3目标检测算法,在其基础上进行优化,提出了一种满足实时性要求的行人小目标检测算法。基于YOLOv3中分类准确率仍有不足的情况,借鉴SENet中对特征进行权重重标定的思路,将SE block引入YOLOv3中,提升了网络的特征描述能力。通过对自行收集实际复杂场景下的红外图像进行目标检测,试验验证了算法的可行性,实验结果表明本文提出的改进网络拥有更高的准确率和更低的虚警率,同时保持了原有算法的实时性。  相似文献   

18.
基于改进YOLOv3算法的带钢表面缺陷检测   总被引:1,自引:0,他引:1       下载免费PDF全文
李维刚  叶欣  赵云涛  王文波 《电子学报》2020,48(7):1284-1292
针对热轧带钢表面缺陷检测中存在的检测速度慢、检测精度低等问题,提出了一种改进的YOLOv3算法模型.使用加权K-means聚类算法来优化确定先验框参数,提高先验框(priors anchor)与特征图层(feature map)的匹配度;同时,调整YOLOv3算法的网络结构,融合浅层特征与深层特征,形成新的大尺度检测图层,提高网络对带钢表面缺陷的检测精度.实验结果表明,改进后的YOLOv3算法在NEU-DET数据集上平均精度均值达到了80%,较原有的YOLOv3算法提高了11%;同时检测速度保持在50fps,优于目前其它深度学习带钢表面缺陷检测算法.  相似文献   

19.
针对目前算法对遥感图像中背景复杂、目标小而密集的复杂场景下的目标检测精度低的问题,提出了一种基于YOLOv3的改进算法,在YOLOv3的基础上,结合了密集连接网络,利用密集连接块来提取深层特征,增强特征传播,同时引入Distance-IoU(DIoU) loss作为坐标预测的损失函数,使边界框的定位更加准确,此外针对目...  相似文献   

20.
将目标检测框架应用于水下声呐图像处理是近期的高热度话题,现有水下声呐目标检测方法多基于声呐图像的纹理特征识别不同物体,难以解决声呐图像中由于形状畸变造成的几何特征不稳定问题。为此,该文提出一种基于YOLOv3的水下物体检测模型YOLOv3F,该模型将从声呐图像中提取的纹理特征和从深度图中提取的空间几何特征相融合,利用深度图中相对稳定的空间几何特征弥补纹理特征表述能力的不足,再将融合后的特征用于目标检测。实验结果表明,所提改进模型的检测性能相较于3个基线模型在识别精度方面具有明显提升;在对单个类别的物体进行检测的情况下,与YOLOv3相比,改进模型也表现出了更出色的检测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号