首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
挤压态AZ31合金在室温下沿挤压方向进行压缩变形,合金中产生大量的拉伸孪晶。综合分析了孪晶对的斯密特因子(SF)和应变兼容因子(m_f),其中孪晶对包括相连的孪晶对和非相连的孪晶对。结果表明:相连的孪晶对优先在取向差约为25°的相邻晶粒的晶界上形核。大约88%的相连孪晶对具有很高的斯密特因子,大约76%的相连孪晶对具有很高的应变兼容因子。低斯密特因子的孪晶对的发生能够通过高应变兼容因子进行解释。大约23%的非相连孪晶对的应变兼容因子接近于0。  相似文献   

2.
对AZ31镁合金轧制板材进行RD-ND-RD-ND(RD-rolling direction,轧向;ND-normal direction,法向)的变路径压缩实验,研究了变形过程中的力学性能,并采用EBSD技术跟踪了上述变形过程中晶粒取向变化,分析了孪晶变体的启动情况。结果表明,在变路径压缩过程中,依次对应{10 12}拉伸孪晶-{10 12}解孪晶-{10 12}拉伸孪晶-{10 12}解孪晶的微观变形机制。首次解孪晶使屈服强度下降明显,而后续的孪晶和解孪晶过程的屈服强度都增加,且两者差值很小。解孪晶过程中孪晶变体的启动遵循Schmid定律,但出现明显的选择性,解孪晶过程都由t3或t4变体完成。  相似文献   

3.
为了获得AZ31镁合金轧制织构(0002)基面密度和轧制条件的定量关系,在压下量为20%~40%、轧制温度为300~500°C的条件下对AZ31镁合金进行热轧试验。采用板材中嵌入镁合金圆柱的方法计算板材厚度方向的剪切应变和等效应变量。利用光学金相显微镜、X射线衍射和EBSD技术检测轧制板材的显微组织、表面层和中心层(0002)基面织构密度。定量分析应变、动态再结晶和孪晶对AZ31镁合金轧制板材织构的影响。结果表明:在相同应变下,轧制开始温度为400°C时,(0002)基面织构极密度最高,并得到了(0002)基面织构极密度随温度和应变的变化规律。  相似文献   

4.
以商用热轧AZ31镁合金板材为研究对象,室温下通过沿轧制方向(Rolling Direction)、轧板法向(Normal Direction)以及RD-ND 3种压缩变形试验,研究了AZ31镁合金在压缩变形过程中的孪晶、解孪晶现象及其对力学性能的影响。结果表明,沿RD压缩后晶粒取向发生变化,变形后的组织中出现了明显的平行带状和透镜状孪晶带。沿ND压缩时,{1012}拉伸孪晶没有发生,且无论压缩变形量大小,金相组织中均无孪晶出现,塑性变形主要依靠滑移产生。解孪晶时屈服应力下降明显,且完全解孪晶所需应变比孪晶小。  相似文献   

5.
通过室温包套挤压,使镁合金产生不同应变量的预应变,从而获得具有不同孪晶比例的组织,并对预应变合金的拉伸及压缩性能进行了测试。结果表明:随着预应变变形量的增加,组织中的{1011}压缩孪晶的数量越来越多,材料的拉伸和压缩性能都明显提高,而且预应变样品拉伸过程中的屈服强度明显高于压缩过程中的屈服强度。这表明由于预应变的施加,在压缩过程中产生了包辛格效应,使材料在反向压缩过程中的屈服强度明显降低;另一方面,计算所得包辛格效应的能量参数(BEP)值随着应变量的增加而逐渐减小,表明随着应变量增加包辛格效应逐渐减弱。  相似文献   

6.
AZ31镁合金板材双向循环弯曲的孪晶组织及织构   总被引:1,自引:0,他引:1  
采用等温双向循环弯曲工艺(bidirectional cyclic bending technology,BCBT)改善了AZ31镁合金板材的微观组织、织构和力学性能。循环弯曲变形能够产生压缩变形与拉伸变形的交替变化,使镁合金材料发生压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,改善了镁合金材料性能。AZ31镁合金板材在变形温度为483 K时经过3个道次的等温双向循环弯曲变形后,基面织构得到明显弱化,织构强度由原始9.59降低到变形后3.54,平均晶粒尺寸为12.2μm。在变形温度443 K,经过1个道次变形后,AZ31镁合金板材的抗拉强度为325 MPa,屈服强度为225 MPa。与原始坯料力能参数相比,抗拉强度提高了19%,屈服强度提高了28%。当变形温度483 K循环变形3道次时,材料的伸长率为17.1%,比原始材料提高了42%。  相似文献   

7.
对AZ31镁合金轧制板材进行变形方向依次为轧向(RD)、横向(TD)、轧向和横向的变路径压缩实验,研究变形过程中的力学性能,并采用电子背散射衍射(EBSD)观察上述变形过程中晶粒取向变化,分析孪晶变体的启动情况。结果表明:在变路径压缩过程中,各路径压缩过程依次对应拉伸孪晶、二次孪晶、解孪晶和拉伸孪晶的微观变形机制,首次变形所产生的预应变提高后续变形中孪晶形核启动力,使后续变形过程的屈服强度大幅增加。二次孪晶的启动遵循Schmid定律,孪晶变体启动的选择性倾向明显,由t1或t5变体来完成二次孪晶。  相似文献   

8.
为了考察轧制工艺参数对板材显微组织和力学性能的影响,通过不同温度和轧制变形量的热轧工艺得到具有不同晶粒尺寸、基面织构强度和孪晶类型的AZ31镁合金轧制板材。拉伸孪晶、压缩孪晶和双孪晶的体积分数与AZ31镁合金轧制板材的晶粒尺寸有关。当轧制温度为523 K、轧制变形量为10%时轧制得到的板材,三种类型孪晶的体积分数最高,此时晶粒尺寸最大。在轧制温度分别为523和473 K时,板材发生完全动态再结晶的临界变形量分别为30%和40%。拉伸实验结果表明:随着轧制变形量的增加,在第一阶段,轧制后板材屈服强度的提高主要依赖于晶粒细化强化和织构强化;当晶粒尺寸随变形量的增加不再发生明显的细化时,板材的屈服强度主要受织构弱化的影响。  相似文献   

9.
采用EBSD技术研究了AZ31镁合金在平面应变压缩过程中的孪生行为.结果表明,当压缩方向为TD,约束方向为RD时,孪生类型主要以{1012}拉伸孪晶为主,孪生变体的选择主要由沿TD的孪生Schmid因子(m)决定,并受RD的影响.可用孪生应变张量来解释不同类型孪生晶粒的差异.对于晶粒内部只发生1个{1012}孪生变体的情况,孪生变体在约束方向上的平均孪生应变张量会使得样品伸长;对于晶粒内部含有2个及以上变体的情况,孪生m较大的变体在约束方向上的平均孪生应变张量使得样品伸长,而m较小的变体使得样品在约束方向缩短,在平面应变压缩变形过程中,不同类型的孪生变体相互协调变形.  相似文献   

10.
AZ31镁合金中拉伸孪晶静态再结晶的分析   总被引:2,自引:0,他引:2  
基于前期工作对压缩孪晶静态再结晶的分析,主要利用XRD和EBSD技术进一步研究AZ31镁合金中拉伸孪晶静态再结晶过程中组织和织构的演变规律,以及再结晶初期新晶粒的取向特征,结果表明:拉伸孪晶不能有效地促进再结晶形核,其细化晶粒的效果不显著,其再结晶速率显著延迟于压缩孪晶;退火过程中并没有生成新的再结晶织构组分,表现为初始基面织构的减弱;新晶粒优先在拉伸孪晶的变体交叉处,或拉伸孪晶与压缩孪晶的交叉处形核,但其取向规律性不强,没有遵循初始拉伸或压缩孪晶内的取向规律,同时还对拉伸与压缩孪晶的再结晶行为进行了比较。  相似文献   

11.
采用分离式霍普金森压杆(SHPB)测试预孪晶AZ31镁合金板材在应变速率分别约为800、1200和1600 s-1时的动态真应力-真应变曲线.通过自编程软件及电子背散射衍射(EBSD)技术分析预孪晶试样在高应变速率前后微观组织和织构的演变.结果表明:沿横向(TD)预压缩后再沿着轧制方向(RD)复合预压缩可促进AZ31镁...  相似文献   

12.
对常规挤压态镁合金AZ31压缩过程的组织及织构演化进行了扫描电镜-电子背散射衍射(SEM-EBSD)原位观察。结果表明材料的初始组织为等轴晶,晶粒的平均尺寸为76微米,晶粒内部未发现形变孪晶。材料的初始织构类型为典型的{11-20}丝织构,即大多数晶粒的<11-20>晶向平行于棒材的挤压方向(ED)。在压缩过程中,多数晶粒内部开始出现拉伸孪晶,随着压缩应变的增加,孪晶片层不断增厚,导致晶内的孪晶合并成大的孪晶并占据晶粒内部的大部分区域进而使孪晶的体积分数不断增加。随着压缩压缩应变的增加初始丝织构不断减弱并有新的基面织构形成。实验表明压缩过程中的{10-12}<10-11>孪生而非滑移是引起压缩过程中织构演化的主要原因。  相似文献   

13.
采用等温压缩实验研究了在变形温度为573~723 K,应变速率范围为0.01~10 s~(-1),压下量30%~50%的条件下TA1/AZ31B多层复合材料的塑性变形行为并利用光学显微镜观察显微组织的变化。研究表明:TA1和AZ31B在压缩复合过程中均发生塑性变形,但是钛/镁多层复合材料各层的变形不同时且不均匀,AZ31B层的变形程度大于TA1层,且在变形过程中AZ31B层发生了动态再结晶。当应变速率为10 s~(-1)时,中间TA1层出现颈缩和断裂。计算结果证明,Arrhenius本构方程可以准确预测TA1/AZ31B多层复合材料的流动应力行为,其平均绝对相对误差为3.976%,相关系数为0.991。此外,基于动态材料模型(DMM)理论建立了TA1/AZ31B多层复合材料在真应变为0.5下的加工图,确定最佳加工条件为723 K温度下,应变速率为0.01 s~(-1),此时最大功率耗散值为28%。同时,TA1/AZ31B多层复合材料的加工图中存在一个不稳定区域,即变形温度范围为573~692 K时应变速率范围为0.6~10 s~(-1)。  相似文献   

14.
采用异步轧制(AR)工艺和同步轧制(NR)工艺制备了AZ31镁合金板材,分析了AZ31镁合金板材的组织性能和力学性能,研究了轧制过程中孪晶组织和织构的演变规律,以及异步轧制工艺参数对镁合金板材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,异步轧制与同步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使异步轧制与同步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;当压下量达到24%时孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替性变化,异步轧制板材在压下量达到24%时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到16.3%。  相似文献   

15.
对轧制下压方向平行和垂直晶粒c轴的两类板材进行150℃轧制(5%下压量)后,利用背散射电子衍射分析(EBSD)研究了轧制试样中不同类型的孪晶组织对静态再结晶的晶粒形核、微观组织及织构的演变的影响。结果表明:含有大量{1011-}-{1012-}双孪晶的样品中,二次孪生有效促进再结晶形核,显著细化晶粒。再结晶晶粒取向规律性不强,有效削弱基面织构。而含有大量{1012-}拉伸孪晶的样品,拉伸孪晶不能有效促进再结晶形核。退火过程中基体不断长大,当再结晶驱动力足够大时,基体会吞并周围拉伸孪晶,同时诱发织构改变,基体取向的织构逐渐增强,拉伸孪晶取向的织构逐步减弱。  相似文献   

16.
17.
以AZ31镁合金热轧板材为研究对象,利用电子背散射衍射(EBSD)技术,研究了与板材法向(ND)分别成0o,30°,60°和90°的试样在室温压缩过程中织构对滑移和孪晶启动的影响。结果表明,0°试样有很高的屈服强度但无明显的屈服平台。拉伸孪晶的临界剪切应力(CRSS)比基面滑移的大。随着角度的增加,试样产生的{10 ■2}拉伸孪晶越来越多。0°试样由于很难发生拉伸孪晶,变形主要由滑移来完成,小角度晶界增加明显。柱面滑移的作用使得60°试样的小角度晶界明显高于30°试样的小角度晶界。  相似文献   

18.
在AZ31轧制板材上截取4种具有不同晶粒取向特征的试样,在170℃温热条件下,分别对上述试样进行压缩变形,分析了变形过程中力学性能变化、晶粒取向演化和织构变化,并基于压缩过程施密特因子的分布特征,对上述变形过程中各种微观变形模式的启动趋势进行了分析,最后对上述变形过程的微观启动模式进行了定量计算。分析结果表明:织构明显影响镁合金压缩变形过程的微观变形机制,从而对宏观力学性能产生明显影响,平行于晶粒c轴压缩因大量的柱面滑移系启动而呈现最高应力值。随着晶粒c轴与压缩方向夹角的增大,拉伸孪晶启动量增加而导致织构明显改变。  相似文献   

19.
镁元素可以降低铝的本征层错能,因而Al-Mg合金被认为具备孪晶变形的潜力。然而在多种大变形Al-Mg合金中很难发现变形孪晶。为了探究Al-Mg合金的孪晶变形潜能,采用第一性原理计算研究镁和空位对铝广义层错能的影响。研究发现Mg和空位均具有层错Suzuki偏析特性,并且会降低Al的本征层错能。但是随着镁含量的提高,铝的本征层错能不会持续降低,孪晶特性参数τa也不会持续升高。基于Al-Mg合金的孪晶特性参数τa,我们预测即使在高固溶镁含量下,Al-Mg合金依然很难发生孪晶变形。镁和空位所引起的本征层错能的降低在一定程度上能够提高大变形Al-Mg合金的加工硬化速率并且促进变形带的形成。  相似文献   

20.
铸造Mg-Zn-Cu-Zr合金的生长孪晶行为(英文)   总被引:1,自引:0,他引:1  
在铸造Mg-Zn-Cu-Zr合金100°C时效过程中观察到生长孪晶,采用光学显微镜和透射电子显微镜表征生长孪晶的形貌和位向。结果表明:在铸态和固溶态的Mg-Zn-Cu-Zr合金中未发现生长孪晶,仅在时效态合金中出现{10ī2}型生长孪晶。Zn含量和热处理工艺显著影响其孪生行为。最后,从空位角度讨论此类生长孪晶可能的生长机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号