首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different zwitterionic block copolymers (BCs) and a cationic BC were synthesized from the same BC precursor, which consisted of a polystyrene (PS) block and a poly[N‐(3‐dimethylamino‐1‐propyl)acrylamide] block. The zwitterionic BCs contained the dimethylammonioacetate (carboxybetaine) and dimethylammoniopropyl sulfonate (sulfobetaine) groups. Thin films cast from these polymers were investigated for surface wettability, surface charge, and protein adsorption. Surface‐energy parameters calculated with advancing contact angle (θa) and receding contact angle (θr) of different probe liquids showed that it was θr and not θa that was representative of the polar/ionic groups in the near‐surface regions of the coatings. Electrophoretic mobility was used to characterize the influence of pH on the net surface charge. In aqueous dispersions, the carboxybetaine polymer showed an ampholyte behavior with an isoelectric point of 6, whereas the sulfobetaine polymer was found to be anionic at all pH values between 2 and 10. Protein adsorption on the carboxybetaine BC was relatively independent of the net charges on the protein or the polymer, but the negatively charged sulfobetaine polymer showed a higher adsorption of positively charged protein molecules. Regardless of the net protein charge, both zwitterionic coatings adsorbed less protein compared to the PS and poly(2,3,4,5,6‐pentafluorostyrene) controls. The sulfobetaine and cationic BCs adsorbed higher amounts of oppositely charged protein molecules than like‐charged protein molecules. However, the adsorption of oppositely charged protein was much higher on the cationic surface than on the sulfobetaine surface. The zwitterionic BCs, particularly the carboxybetaine polymer, from this article are expected to function as stable, low‐fouling surface modifiers in different biological environments. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The effects of polymer functional group and solution pH on stability of colloidal Al2O3 water suspension were studied. Both the nonionic polymers: polyethylene glycol (PEG), polyethylene oxide (PEO) and the ionic ones: polyacrylic acid (PAA), polyacrylamide (PAM), polyvinyl alcohol (PVA) were used in the experiments. The following methods were applied: turbidimetry (stability measurements), spectrophotometry (determination of polymer adsorption), viscosimetry (thickness of polymer adsorption layer), potentiometric titration (solid surface charge density) and microelectrophoresis (potential zeta). It was shown that anionic polyacrylic acid is both the most effective stabilizer (at pH 9) and flocculant (at pH 3) of the alumina suspension. Its carboxyl groups have the greatest affinity for the surface active sites (the largest adsorption) of all functional groups present in the other examined polymers. The latter, i.e. hydroxyl (PEG, PEO, and PVA) and acetate (PVA) show a much lower affinity for the Al2O3 surface (negligible adsorption) and minimally affect the stability of the alumina-solution system.  相似文献   

3.
Two poly(hydroxo aluminum) intercalated Wyoming bentonites were prepared starting from two different aluminum pillaring solutions. The sorption mechanism of Laurentian fulvic acid (FA) onto these poly(hydroxo aluminum) intercalated bentonites was investigated at different pH values and at different ionic strengths (NaCl or CaCl2). Three mechanisms contribute to the FA adsorption, depending on the pH and the nature (NaCl or CaCl2) and ionic strength of the background electrolyte. In the presence of NaCl the FA sorption onto poly(hydroxo aluminum) intercalated bentonites can be mainly ascribed to ligand exchange between the amphoteric poly(hydroxo aluminum) hydroxyl groups and the deprotonated carboxylic groups of the FA. The FA adsorption due to ligand exchange reactions decreases with increasing pH. In presence of Ca2+ ions the FA adsorption is enhanced, compared to the presence of Na+, due to Ca2+ bridging between negatively charged groups on the FA molecules and the poly(hydroxo aluminum) intercalated bentonite. The FA adsorption due to Ca2+ bridging increases with increasing pH. A third mechanism is enhanced FA adsorption ascribed to FA-Ca-FA bridging and was detected from the FA adsorption in presence of Ca2+ at the zero point of charge of the poly(hydroxo aluminum) bentonite (pH 5).  相似文献   

4.
Xiaozhen Zhang 《Desalination》2009,249(1):364-367
ZrO2/cordierite composite microfiltration (MF) membrane was prepared by the combination of extrusion and slip casting techniques. The electrokinetic properties of as-prepared membrane were characterized by streaming potential measurements operated in tangential microfiltration mode. The influences of pH, electrolyte species and concentrations of filtered solutions on the electrokinetic properties and permeate flux were investigated. Results show that the streaming potentials are dependent on the pH, types of the electrolyte and concentrations of filtered solutions. The isoelectric point (IEP) of membranes moved from 4.2 to 5.4 with different types of 10 3 M electrolyte solutions. The change of ionic concentration of NaCl solution does not alter the IEP of the membranes, but does make the streaming potential tend to be zero at high salt concentration. The specific adsorption of Ca2+ and SO42 ions in CaCl2 and Na2SO4 solutions onto the pore wall can alter the IEP and the net charge sign of the membrane. The as-prepared ZrO2/cordierite membrane shows a maximal permeate volume flux near the IEP.  相似文献   

5.
木质素磺酸钠在固体表面的吸附特性决定了其应用性能,利用红外和紫外分光光度仪,采用剩余质量分数法研究了温度、pH值、无机盐和氢键破坏剂脲对木质素磺酸钠在TiO2/水界面吸附动力学和等温吸附性能的影响,初步探讨了其在固液界面的吸附作用机理。结果表明,该吸附为单层多点式吸附,随着温度升高和pH值减小,木质素磺酸钠在TiO2/水界面的吸附速率常数和饱和吸附量均增大,而离子强度的增大和脲的加入却使吸附速率常数减小;木质素磺酸钠在TiO2/水界面的吸附驱动力为静电、疏水和氢键作用,疏水作用力可显著增加其吸附量。  相似文献   

6.
By streaming potential measurements, the zero point of charge (zpc) of or-Al2O3 having a fully hydroxylated surface was found to occur at pH 9.2 ± 0.2. By calcining the alumina at temperatures above 1000°C, the zpc was lowered to about pH 6.7. By aging the calcined material in water at room temperature for a period of weeks, the surface was rehydroxylated and the zpc increased. The zpc of MgO occurred at pH 12.5 f 0.5. Because of its high solubility, the zpc of MgO was not affected by heat treatment.  相似文献   

7.
The characteristics of Lu2O3-doped ZrO2 as a solid electrolyte material were investigated in terms of its oxygen ion conductivity and flexural strength to realize its electrolytic function at intermediate and high temperatures. The effect of doping Lu3+, which has a high nuclear charge electric field strength, was examined through impedance spectroscopy, open-circuit potential measurements, and bending tests. The results with Lu2O3 dopant were compared with those obtained with a widely used dopant, Y3+, having a similar ionic radius with Lu3+, as well as a dopant that provides high ionic conduction, Sc3+, having a smaller ionic radius with Zr4+. The results revealed that, at the same dopant concentration, both the ionic conductivity and the flexural strength of Lu2O3-doped ZrO2 are higher than those of the widely used Y2O3-doped ZrO2. The conductivity of 8 mol% Lu2O3-doped ZrO2 surpassed that of 8 mol% Sc2O3-doped ZrO2 in the range of 800–950 °C (0.153 S/cm vs. 0.121 S/cm at 900 °C). These results indicate the potential of Lu3+ as a dopant for enhancing the performance of ZrO2 solid electrolytes.  相似文献   

8.
Yiqing Hu  Limin Wu 《Polymer》2011,52(1):122-4769
Transparent PMMA/ZrO2 nanocomposites were prepared by in-situ bulk polymerization of methyl methacrylate (MMA)/ZrO2 dispersions that were firstly synthesized using nonaqueous synthesized ZrO2 nanocrystals and the function monomer, 2-hydroxyethyl methacrylate (HEMA), as the ligand. The dispersion behavior of ZrO2 nanoparticles in MMA, structure, mechanical and thermal properties of the PMMA/ZrO2 nanocomposites were investigated comprehensively. It was found that ZrO2 nanoparticles were well dispersed in MMA with HEMA ligand, but the MMA/ZrO2 dispersions easily destabilized in air as well as at elevated temperatures. The destabilization temperature of the dispersion is raised by increasing the molar ratio of HEMA/ZrO2 to match the bulk polymerization temperature. The PMMA/ZrO2 nanocomposites showed an interesting chemical structure (namely, highly cross-linked structure even at ZrO2 content as low as 0.8 wt% and hydrogen bonding interaction between polymer matrix and ZrO2 nanoparticles), with enhanced rigidity without loss of the toughness and improved thermal stability. The relationship between the structure and the properties of the PMMA/ZrO2 nanocomposites based on the HEMA coupling agent was discussed.  相似文献   

9.
ABSTRACT

The effects of the aqueous phase pH and the organic phase HDNNS concentration on the distribution coefficients of Ni and Fe in pure HDNNS or mixed LIX63-HDNNS systems have been investigated. With the mixed extractants, there is antagonistic extraction of iron below pH 1.4 whereas synergistic extraction occurs above this pH. At pH 2.5 and a fixed LIX63 concentration, iron distribution increases markedly in comparison with the oxime-free system and goes through a maximum with increase in HDNNS concentration. A similar behavior is shown by nickel at both pH 1.0 and 2.5. The log DFeversus pH plot gives a curve with a slope of two for the LIX63-HDNNS mixed system, which suggests that iron is extracted in the form of a species with an ionic charge of 2, probably Fe(OH)2+. The extracted complexes are proposed as Ni(H2L)3D2where all three oxime molecules function as bidentate ligands, and Fe(OH) (H2L) 3D2where one of the oxime molecules functions as a monodentate ligand. The Ni/Fe selectivity is high at low pH and changes mainly as a result of variations in the nickel distribution coefficient, but it is low at high pH because of the synergistic extraction of iron.  相似文献   

10.
Zirconium pillared clay (PILC) was prepared using montmorillonite as the base clay. Adsorption of tannic acid (tannin) was studied by a batch equilibrium technique, as a function of adsorbate concentration, temperature, pH, agitation speed, particle size of the adsorbent and ionic strength. The process of uptake is governed by diffusion controlled first‐order reversible rate kinetics. The higher uptake for the pH range 4.0–6.0 was attributed to external hydrogen bonding between phenolic‐OH groups of tannin molecules and the hydrogen bonding sites on the clay. The removal of tannin by adsorption was found to be >99.0% depending on the initial concentration in the pH range of 4.0–6.0. The process involves both film and pore diffusion to different extents. The effects of solute concentration, temperature, agitation speed and particle size on the diffusion rate were investigated. Tannin uptake was found to increase with ionic strength due to the compression of diffuse double layers. The applicability of Langmuir and Freundlich isotherm models has been tested. The maximum adsorption capacity of PILC was found to be 45.8 µmol g?1 of clay and the affinity constant is 2.9 × 10?2 dm3 µmol?1 at 30 °C. Thermodynamic parameters such as ΔG °,ΔH ° and ΔS ° were calculated to predict the nature of adsorption. The isosteric enthalpies of adsorption were also determined and found to decrease with increasing surface coverage. Regeneration with hot water (60 °C) has been investigated for several cycles with a view to recovering the adsorbed tannin and also restoring the sorbent to its original state. Copyright © 2001 Society of Chemical Industry  相似文献   

11.
The thermodynamics of the so-called perfectly polarizable electrode was employed to analyze the total charge densities for a nearly defect-free Pt(1 1 1) electrode in a series of NaH2PO4 solutions with an excess of inert electrolyte (0.1 M HClO4) at constant ionic strength and pH. Thermodynamic analysis using both electrode potential and charge density as independent electrical variables is described. The Gibbs excess, Gibbs energy of adsorption and charge numbers both at constant electrode potential and constant chemical potential for anion adsorption at the Pt(1 1 1) surface have been determined. The calculated electrosorption valencies and charge numbers at constant chemical potential are close to two electrons per adsorbed anion, suggesting that in the absence of co-adsorbed species, HPO42− is the predominant adsorbed species. The maximum Gibbs excess of adsorbed hydrogenphosphate attains a value of ≈3.2 × 1014 ions cm−2 which corresponds to a coverage of ≈0.22 ML.  相似文献   

12.
Zeta potential measurements by the streaming current method were performed on pulp (DP) fibers with or without irreversibly adsorbed monolayers of cationic polyelectrolyte. Factors affecting the electrokinetic properties of these fibers, such as the amount of adsorbed polymer, the polymer molecular weight (Mn 50,000 and 200,000), ionic strength (10?5 ~ 10?2M KCl), and the pH of the streaming medium (KCl solution), were examined. As the amount of adsorbed polymer increased, the negative zeta potential of the fibers decreased until the polarity of the zeta potential was reversed to the positive side. A marked change in the value of zeta potential was not observed when the formation of the saturated monolayer was completed. The zeta potential also varied in proportion to an increase in the amount of polymer adsorbed. Experimental results are interpreted with reference to the origin of the surface charge, the amphoteric nature of the surface, the modes of adsorption, and the adsorbed polymer chain configuration. Possible effects of the adsorbed monolayer formation on the structural change of the electric double layer at the fiber surface are discussed. It is concluded that the formation of a monolayer of cationic polyelectrolytes on the negatively charged cellulose fibers under the condition of k1 > k2 (part I) provides a means to arbitrarily control the charge of the fibers until formation of a saturated monolayer.  相似文献   

13.
《Applied Clay Science》2010,47(4):369-375
Phoslock®, a lanthanum-modified bentonite, has been investigated for phosphate uptake from synthetic and real wastewaters in laboratory and field. In laboratory tests, equilibrium and kinetics were studied at various temperatures, ionic strength, and pHs. The investigation indicated that phosphate adsorption occurs through a chemisorption process. The activation energy of the adsorption process was calculated based on pseudo-second order rate constant. The maximum adsorption capacity of Phoslock was unaffected at pH 5–7, but decreased at higher pHs. The monovalent phosphate anion, H2PO4, had the greatest affinity for the adsorbent surface. Furthermore, it was also shown that the activation energy was lower at a higher solution pH attributed to the loss of adsorption sites at the higher pHs while it remained unaffected by the ionic strength of the solution. A field test also demonstrated that the Phoslock works well for phosphate uptake in polluted waters.  相似文献   

14.
To improve the electrochemical performance of pure poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (P(VDF‐HFP))‐based gel polymer electrolytes, different amounts of monodispersed ZrO2 nanoparticles were introduced to fabricate P(VDF‐HFP)/ZrO2 composite polymer electrolytes (CPEs) using the phase inversion method and activated processes, in which the monodispersed ZrO2 nanoparticles were synthesized by an easy route without any chelating agents or surfactants, and confirmed using scanning electron microscopy, particle size distribution measurement and X‐ray diffraction. The characterization results show that the as‐fabricated CPE membranes present not only an abundant porous structure, but also an improved mechanical strength. In particular, sample CPE‐5 presents the best properties when the doped content of the monodispersed ZrO2 nanoparticles reaches 5 wt% in the polymer matrix, in which the liquid uptake and ionic conductivity at room temperature are about 192.4% and 3.926 mS cm?1, and the electrochemical working window and thermal decomposition temperature can increase to 5.1 V and 420 °C, respectively. Moreover, an assembled LiCoO2/CPE‐5/Li coin cell can deliver excellent rate and cycling performance, in which the discharge specific capacity of the cell can show about 83.95% capacity retention at 2.0 C after 85 cycles. © 2018 Society of Chemical Industry  相似文献   

15.
Interaction of SOx (x?=?2,3) molecules on active sites of dianiline (as a model for polyaniline, denoted here as 2PANI) was studied using density functional theory at the BLYP-D/6-31+G(d) level of theory. Natural population analysis was used to find out the charge distribution as well as the net transferred charge of SOx upon adsorption on 2PANI and the result has been compared with Mulliken charge analysis to evaluate the sensing ability of 2PANI. The computed density of states point to the remarkable orbital hybridization between SOx and 2PANI during the adsorption process. As a consequence, the results of UV–VIS confirm the sensing ability of 2PANI toward SO2 and SO3. Based on our results, it can be found that at proper configuration the SO2 and SO3 molecules can be adsorbed on 2PANI with adsorption energies (Eads) of ?18.2 and ?62.9?kJ/mol (BSSE), respectively.  相似文献   

16.
《Ceramics International》2016,42(3):4507-4516
Three dimensional, highly porous, ZrO2 scaffolds coated by glass–ceramic derived from 45S5 bioglass were fabricated. The surface reactivity of 45S5 in aqueous solution was investigated as a function of the immersion time. The influence of the solid loading on the rheological behavior of 45S5 aqueous slips with ammonium polyacrylate (NH4PA) was studied; besides the effect of poly(vinyl)alcohol (PVA) on the relative viscosity was determined. The structure and microstructure of uncoated and coated ZrO2 scaffolds were characterized. The high ionic exchange capability of 45S5 was demonstrated by the pH rise, the significant weight loss and the amorphous calcium phosphate nucleation, upon its immersion in aqueous solution. The addition of PVA did not affect the dispersion properties of the 45S5 powder, which were basically controlled by its negative surface charge. 30 wt% 45S5 slips with 4 wt% PVA exhibited a yield stress and an adequate viscosity in the low shear rate range, to produce a bioglass coating into the ZrO2 scaffold. The glass-ceramic coating was distributed along the strut surfaces, forming a thin film without altering the porosity and the strut thickness of the original ZrO2 scaffold structure.  相似文献   

17.
Active carbons with various particle sizes (38–150, 300–500 and 800–1,200 μm) were modified by ionic liquids (ILs), and organic polymer was modified by acrylamide using a simple procedure, and these materials were applied to capture carbon dioxide (CO2). The CO2 adsorption amounts were calculated using a mass balance equation at three different temperatures (298.15, 308.15 and 318.15 K), respectively, and the influences of gas pressure, particle size and temperature on adsorption were discussed. Experimental results showed that the CO2 adsorption capacity of ILs-modified active carbons was better than amino-modified polymer, and the smaller particle size (38–150 μm) ILsmodified active carbons had the largest adsorption capacity at 298.15 K. Compared with previous research about polyethyleneimine (PEI)-modified silica gel, the adsorption amount of CO2 on ILs-modified active carbons has been greatly improved with lower cost.  相似文献   

18.
The role of solvent orientation and displacement in electrochemical adsorption is of current interest. The adsorption of the symmetrical and almost spherical molecule 1,4-diazabicyclo-(2,2,2) octane, [N(CH2CH2)3N] (“DBO”) has been studied at the Hg electrode in relation to previous measurements on pyrazine and pyridine adsorption. Evaluation of the free-energy of adsorption as a function of surface charge and coverage, and of the Esin and Markov effects, enables the complex adsorption behaviour observed with this molecule to be elucidated. The Esin and Markov effect is made up of two principal surface dipole pd terms: one due to displacement of oriented solvent molecules and the other due to orientation of the organic adsorbate itself. Both terms are dependent on surface charge. Relations to the surface pressure behaviour are investigated.  相似文献   

19.
《Electrochimica acta》1987,32(2):325-330
The adsorption of N-tosylglycine (CH3-Ø-SO2-NH-CH2COOH) has been studied at the mercury/aqueous solution interface (0.1 M NaClO4 as base electrolyte) with the aim of comparing the interfacial properties of the molecular forms of the amino acid present in solution at different pH values. The analysis of the interfacial behaviour was performed by tensammetric measurements using an ac phase selective polarographic method of pH = 4, 6 and 12.It has been shown that the adsorption isotherm. (Frumkin type) is congruent with respect to the potential, with a slight attractive interaction factor at pH = 4, but higher and repulsive at pH = 6 and 12. At pH = 4 the species adsorbed seems to be the neutral one, white at pH = 6 and 12 the monoanionic species seems to be involved in the electrode interaction. Moreover, there is evidence that the molecule, in its neutral or ionic form, is always adsorbed with the tosyl group flat on the surface and the glycine moiety turned toward the solution.  相似文献   

20.
《Ceramics International》2022,48(17):24979-24988
In search of better materials for visible light photocatalytic performance, perovskite Sr0.3(Ba/Mn)0.7ZrO3 nanopowders anchored on graphene oxide were synthesized for the evaluation of their photocatalytic activity against methylene blue (MB). The chemical coprecipitation method was used to synthesize SrZrO3 (SZO) and a series of doped derivatives having a nominal composition of Sr1-x(Ba,Mn)xZrO3 (x = 0.1–0.9) at an annealing temperature of 700 °C for 12 h. However, Sr0.3(Ba,Mn)0.7ZrO3 with a bandgap value of 3.50 eV was further processed for the formation of composite with graphene oxide (GO) owing to its lowest bandgap value in the synthesized series. The inclusion of larger Ba2+ cations in the lattice resulted in the redistribution of cations creating antisite defects which were evident from the shrinkage of the lattice. The incorporation of Mn2+ resulted in the hybridization of Mn2+ (3d) orbitals with the split Zr4+ (4d) orbitals. This reduced the bandgap and composite formation with GO further enhancing the delocalization of excited electrons to GO hence, reducing electron-hole recombination. Adsorption assisted photocatalysis under a 100 W tungsten lamp was performed using the designed catalysts for the removal/degradation of MB. The π-π conjugation and the ionic interactions were found responsible for the adsorption of MB at the GO surface. High surface coverage, initial dye concentrations, heterogeneous catalyst surface, weak van der Waals interactions, pH and availability of ?OH radicals were found to be the decisive factors for the removal/degradation process. Improved charge separation enhances the generation of ?OH and better performance of the GO composites as opposed to the pristine strontium zirconate perovskites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号