共查询到20条相似文献,搜索用时 46 毫秒
1.
本文提出了一种基于YOLOv3算法的运动车辆与静止车辆的识别方法.其利用卷积神经网络提取运动车辆与静止车辆的特征,对网络的输出层Softmax进行修改,并通过大量实验优化权重模型参数;利用AICITY CHALLENGE数据集制作训练和检测数据库.测试结果表明,改进后的YOLOv3算法能更好地识别多种现实生活场景中的运动车辆与静止车辆,取得了95.55%的mAP与34.7 frame/s的检测速度,具有很好的检测性能与实时性;检测精度达到了98%,足够满足实用需求. 相似文献
2.
在智慧消防城市救援平台项目中,定位建筑内消防器材位置的前提是准确识别建筑图纸上消防器材图标,只有精准地识别建筑图纸上的消防器材,救援平台才能为消防救援行动提供有效支撑.针对手动录入建筑楼层消防信息效率低下的问题,文中提出了一种在darknet框架下利用YOLOv3算法来实现的基于深度学习的消防器材自动识别方案.通过收集... 相似文献
3.
针对城市道路的交通标志在真实路况中存在光照不均、遮挡等因素导致的在目标检测任务中出现参数量过多、检测速度慢等问题,文章基于原有YOLOv5s的网络框架提出一种改进后的目标检测网络Shuffle-Block,首先选用开源的CCTSDB数据集进行实验,引入Shuffle-Block模块替换YOLOv5s原始的CSPDarknet主干网络,使得YOLOv5s的网络模型轻量化,降低模型的复杂程度。 相似文献
4.
目标检测是计算机视觉领域中一项十分重要的任务,指的是对图像或视频中的目标进行分类和定位,因其被广泛应用于视频检测、目标跟踪等任务中而受到关注。本文首先介绍了目标检测中经常使用的基准数据集和评估指标,同时列举说明了重要的主干网络架构和流行的目标检测算法。最后,我们比较了这些体系结构在多个指标上的性能,对所述算法进行了总结,并对未来前景进行了展望。 相似文献
5.
智能交通和自动驾驶成为当下研究的热点问题,而交通标志识别是其中必不可少的一项关键性技术,当下急需一种准确、高效的交通标志识别方法。针对以上问题,文中构建了一种基于深度学习的交通标志识别模型TSR_Lenet;同时由于基于深度学习的模型在训练过程中存在收敛速度慢、容易收敛到局部最优的问题,将Momentum加速学习的优点与RMSProp抑制训练过早结束的优势相融合,使得构建模型的过程更加快速、高效。实验结果表明,所提出的基于深度学习的交通标志识模型TSR_Lenet,具有自动学习的能力和训练模型周期短的优点,并且准确性高,鲁棒性好,具有良好的泛化能力。 相似文献
6.
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4, YOLOv5, Scaled-YOLOv4, YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。 相似文献
8.
随着近年来5G与人工智能的崛起,无人驾驶技术在不断突破,行人检测作为无人驾驶中的重要任务之一,是一个具有重要研究意义的课题.文中采用深度学习框架Pytorch和目标检测网络YOLO进行行人检测,分别搭建了 YOLO v3、YOLO v3轻量版YOLOv3-Tiny、YOLO v3与SPP-Net融合版本YOLOv3-S... 相似文献
9.
目标检测是计算机视觉领域内的热点研究课题,在医疗、监控及航空等领域都有广泛应用。先对目标检测技术的背景进行了介绍,然后从基于锚框的两阶段目标检测算法、基于锚框的单阶段目标检测算法、基于Anchor Free的目标检测算法三个阶段分别进行介绍,同时还介绍了主流的数据集以及主要的性能评价指标。最后叙述了当前目标检测领域存在的挑战,展望了目标检测技术在未来的发展方向。 相似文献
10.
针对目前在传统交通标志识别的检测方法中,检测结果易受环境影响,检测效果不佳.不同的场景需要设计不同的特征,随着数据量的增大,特征设计变得日益困难,且识别终端不易携带等问题.提出一种端到端基于YOLOv4的移动端道路交通标志检测系统.使用TT100K交通标志公开数据集训练YOLOv4网络,将最终训练好的权重网络移植到便携... 相似文献
11.
针对特定场景交通标志精度低与识别速度慢的问题,基于交通标志边缘信息与卷积神经网络,提出了一种交通标志图像识别T-YOLO算法.该算法基于YOLOv2算法检测思想,融合残差网络、卷积层填充0等结构,下采样舍弃池化层改用卷积层,并提取边缘信息与上采样以提升精度,设计7层特征提取网络以缩短识别速度,随后使用Softmax函数... 相似文献
12.
针对网络流量异常检测过程中提取的流量特征准确性低、鲁棒性差导致流量攻击检测率低、误报率高等问题,该文结合堆叠降噪自编码器(SDA)和softmax,提出一种基于深度特征学习的网络流量异常检测方法。首先基于粒子群优化算法设计SDA结构两阶段寻优算法:根据流量检测准确率依次对隐藏层层数及每层节点数进行寻优,确定搜索空间中的最优SDA结构,从而提高SDA提取特征的准确性。然后采用小批量梯度下降算法对优化的SDA进行训练,通过最小化含噪数据重构向量与原始输入向量间的差异,提取具有较强鲁棒性的流量特征。最后基于提取的流量特征对softmax进行训练构建异常检测分类器,从而实现对流量攻击的高性能检测。实验结果表明:该文所提方法可根据实验数据及其分类任务动态调整SDA结构,提取的流量特征具有更高的准确性和鲁棒性,流量攻击检测率高、误报率低。 相似文献
13.
针对交通标志尺度变化大导致检测精度低的问题,本文提出一种改进CenterNet的交通标志检测算法.采用ResNeSt50作为主干特征提取网络,引入PSConv(Ploy-Scale Convolution)改进网络卷积层结构.设计多尺度感受野模块,对ASPP(Atrous Spatial Pyramid Pooling... 相似文献
14.
手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。 相似文献
15.
根据我国交通标志的颜色和几何属性,提出了一种适用于自然背景下的交通标志检测方法。该方法采用RGB彩色分量差对自然背景下的禁令标志图像进行分割,结合最小二乘法对像素坐标进行椭圆拟合,再根据边界的圆形度参数判断是否为圆形区域。实验证明了该方法的有效性与鲁棒性。 相似文献
16.
边缘计算场景下,边缘设备时刻产生海量蜂窝流量数据,在异常检测任务中针对直接对原始数据检测异常存在的计算冗余问题,提出基于特征降维的蜂窝流量数据异常检测方法.该方法在全局范围内利用LSTM自编码器提取流量数据特征和标识异常网格,然后在存在可疑异常的网格使用K?means聚类进行局部异常确认,结果表明可以更好地检测出不同活... 相似文献
17.
为了解决绝缘子目标检测中无法精确定位的问题,该文基于深度学习提出一种绝缘子定向识别算法,通过在轴对齐检测框中加入角度信息,可有效解决常规深度学习算法无法精确定位目标的问题。该算法首先将角度旋转参数引入轴对齐矩形检测框中构成定向检测框,然后将该参数偏移量作为第5参数加入到损失函数中进行迭代回归,同时为提高检测精度在训练过程中使用Adam算法替代随机梯度下降(SGD)算法进行损失函数优化,最终可获得绝缘子定向检测模型。实验分析表明,加入旋转角度的定向检测框可有效对绝缘子目标进行精确定位。 相似文献
18.
面对复杂场景下异常事件检测的准确率偏低的情况,本文提出一种基于深度学习的异常事件检测方法,并将此方法扩展为异常事件分类方法.利用神经网络模型提取特征,将群体发散聚集事件,群体密集聚集事件,群体逃散事件和追赶事件这4种异常事件进行检测和分类.通过PKU-SVD-B测试集对训练出来的模型进行测试实验,并在UMN数据集上与几种方法做了对比实验,验证了本文提出的基于深度学习的异常事件检测算法,在适应多种不同场景的前提下,对多种异常事件检测的准确率很高,表明训练出来的模型对异常事件检测具有极强的泛化能力. 相似文献
19.
交通标识检测中样本类别间的不平衡常常导致分类器的检测性能弱化,为了克服这一问题,该文提出一种基于感兴趣区域和HOG-MBLBP融合特征的交通标识检测方法。首先采用颜色增强技术分割提取出自然背景中交通标识所在的感兴趣区域;然后对标识样本库提取HOG-MBLBP融合特征,并用遗传算法对SVM交叉验证进行参数的优化选取,以此来训练和提升SVM分类器性能;最后将提取的感兴趣区域图像的HOG-MBLBP特征送入训练好的SVM多分类器,进行进一步的精确检测和定位,剔除误检区域。在自建的中国交通标识样本库上进行了实验,结果表明所提方法能达到99.2%的分类准确度,混淆矩阵结果也表明了该方法的优越性。 相似文献
20.
目标检测是计算机视觉领域内的热点课题,在机器人导航、智能视频监控及航天航空等领域都有广泛的应用.本文首先综述了目标检测的研究背景、意义及难点,接着对基于深度学习目标检测算法的两大类进行综述,即基于候选区域和基于回归算法.对于第一类算法,先介绍了基于区域的卷积神经网络(Region with Convolutional Neural Network,R-CNN)系列算法,然后从四个维度综述了研究者在R-CNN系列算法基础上所做的研究:对特征提取网络的改进研究、对感兴趣区域池化层的改进研究、对区域提取网络的改进研究、对非极大值抑制算法的改进研究.对第二类算法分为YOLO(You Only Look Once)系列、SSD(Single Shot multibox Detector)算法及其改进研究进行综述.最后根据当前目标检测算法在发展更高效合理的检测框架的趋势下,展望了目标检测算法未来在无监督和未知类别物体检测方向的研究热点. 相似文献
|