首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Pristine and vanadium-doped In2O3 nanofibers were fabricated by electrospinning and their sensing properties to H2S gas were studied. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the inner structure and the surface morphology. The H2S-sensing performances were characterized at different temperatures ranging from 50 to 170 °C. The sensor based on 6 mol% V-doped In2O3 nanofibers exhibit the highest response, i.e. 13.9–50 ppm H2S at the relatively low temperature of 90 °C. In addition, the fast response (15 s) and recovery (18 s) time, and good selectivity were observed.  相似文献   

2.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

3.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

4.
A SrCo0.8Fe0.2O3 impregnated TiO2 membrane (TiO2-SrCo0.8Fe0.2O3 membrane) was successfully prepared using a sol-gel method in combination with a wet impregnation process. The membrane was subjected to a single gas permeance test using oxygen (O2) and nitrogen (N2). The TiO2 membrane was immersed in the SrCo0.8Fe0.2O3 solution, dried and then calcined to affix SrCo0.8Fe0.2O3 into the membrane. The effect of the acid/alkoxide (H+/Ti4+) molar ratio of the TiO2 sol on the TiO2 phase transformation was investigated. The optimal molar ratio was found to be 0.5, which resulted in nanoparticles with a mean size of 5.30 nm after calcination at 400 °C. The effect of calcination temperature on the phase transformation of TiO2 and SrCo0.8Fe0.2O3 was investigated by varying the calcination temperature from 300 to 500 °C. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared (FTIR) analysis confirmed that a calcination temperature of 400 °C was preferable for preparing a TiO2-SrCo0.8Fe0.2O3 membrane with fully crystallized anatase and SrCo0.8Fe0.2O3 phases. The results also showed that polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) were completely removed. Field emission scanning electron microscopy (FESEM) analysis results showed that a crack-free and relatively dense TiO2 membrane (∼0.75 μm thickness) was created with a multiple dip-coating process and calcination at 400 °C. The gas permeation results show that the TiO2 and TiO2-SrCo0.8Fe0.2O3 membranes exhibited high permeances. The TiO2-SrCo0.8Fe0.2O3 membrane developed provided greater O2/N2 selectivity compared to the TiO2 membrane alone.  相似文献   

5.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

6.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

7.
Spherical (Ni0.5Mn0.5)(OH)2 with different secondary particle size (3 μm, 10 μm in diameter) was synthesized by co-precipitation method. Mixture of the prepared hydroxide and lithium hydroxide was calcined at 950 °C for 20 h in air. X-ray diffraction patterns revealed that the prepared material had a typical layered structure with space group. Spherical morphologies with mono-dispersed powders were observed by scanning electron microscopy. It was found that the layered Li[Ni0.5Mn0.5]O2 delivered an initial discharge capacity of 148 mAh g−1 (3.0-4.3 V) though the particle sizes were different. Li[Ni0.5Mn0.5]O2 having smaller particle size (3 μm) showed improved area specific impedance due to the reduced Li+ diffusion path, compared with that of Li[Ni0.5Mn0.5]O2 possessing larger particle size (10 μm). Although the Li[Ni0.5Mn0.5]O2 (3 μm) was electrochemically delithiated to Li0.39[Ni0.5Mn0.5]O2, the resulting exothermic onset temperature was around 295 °C, of which the value is significantly higher than that of highly delithiated Li1−δCoO2 (∼180 °C).  相似文献   

8.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

9.
To fabricate all-solid-state Li batteries using three-dimensionally ordered macroporous Li1.5Al0.5Ti1.5(PO4)3 (3DOM LATP) electrodes, the compatibilities of two anode materials (Li4Mn5O12 and Li4Ti5O12) with a LATP solid electrolyte were tested. Pure Li4Ti5O12 with high crystallinity was not obtained because of the formation of a TiO2 impurity phase. Li4Mn5O12 with high crystallinity was produced without an impurity phase, suggesting that Li4Mn5O12 is a better anode material for the LATP system. A Li4Mn5O12/3DOM LATP composite anode was fabricated by the colloidal crystal templating method and a sol-gel process. Reversible Li insertion into the fabricated Li4Mn5O12/3DOM LATP anode was observed, and its discharge capacity was measured to be 27 mA h g−1. An all-solid-state battery composed of LiMn2O4/3DOM LATP cathode, Li4Mn5O12/3DOM LATP anode, and a polymer electrolyte was fabricated and shown to operate successfully. It had a potential plateau that corresponds to the potential difference expected from the intrinsic redox potentials of LiMn2O4 and Li4Mn5O12. The discharge capacity of the all-solid-state battery was 480 μA h cm−2.  相似文献   

10.
Amorphous Ru1−yCryO2/TiO2 nanotube composites were synthesized by loading different amount of Ru1−yCryO2 on TiO2 nanotubes via a reduction reaction of K2Cr2O7 with RuCl3·nH2O at pH 8, followed by drying in air at 150 °C. Cyclic voltammetry and galvanostatic charge/discharge tests were applied to investigate the performance of the Ru1−yCryO2/TiO2 nanotube composite electrodes. For comparison, the performance of amorphous Ru1−yCryO2 was also studied. The results demonstrated that the three dimensional nanotube network of TiO2 offered a solid support structure for active materials Ru1−yCryO2, allowed the active material to be readily available for electrochemical reactions, and increased the utilization of active materials. A maximum specific capacitance 1272.5 F/g was obtained with the proper amount of Ru1−yCryO2 loaded on the TiO2 nanotubes.  相似文献   

11.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

12.
Scanning electron microscopy (SEM), electron-probe microanalysis, energy- and wavelength-dispersive X-ray analysis and X-ray powder diffraction were used to investigate the subsolidus phase relations in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air (oxygen partial pressure pO2=0.21   atm) at 1275 °C. The addition of Mn2O3 to the starting La2O3:3TiO2 mixture led to the formation of a La-deficient perovskite La2/3TiO3 compound. The oxides form two new compounds with the proposed compositions: (i) La1.7Ti13.0Mn6.3O38−x, with a davidite-like crystal structure, and (ii) La49Ti18Mn13O129. There were also several solid solutions existing over a wide range of concentrations.  相似文献   

13.
A new solution combustion synthesis of layered LiNi0.5Mn0.5O2 involving the reactions of LiNO3, Mn(NO3)2, NiNO3, and glycine as starting materials is reported. TG/DTA studies were performed on the gel-precursor and suggest the formation of the layered LiNi0.5Mn0.5O2 at low temperatures. The synthesized material was annealed at various temperatures, viz., 250, 400, 600, and 850 °C, characterized by means of X-ray diffraction (XRD) and reveals the formation of single phase crystalline LiNi0.5Mn0.5O2 at 850 °C. The morphology of the synthesized material has been investigated by means of scanning electron microscopy (SEM) and suggests the formation of sub-micron particles. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) studies on the synthesized LiNi0.5Mn0.5O2 powders indicate that the oxidation states of nickel and manganese are +2 and +4, respectively. Electrochemical galvanostatic charge-discharge cycling behavior of Li//LiNi0.5Mn0.5O2 cell using 1 M LiPF6 in EC/DMC as electrolyte exhibited stable capacities of ∼125 mAh/g in the voltage ranges 2.8-4.3 V and 3.0-4.6 V and is comparable to literature reports using high temperature synthesis route. The capacity remains stable even after 20 cycles. The layered LiNi0.5Mn0.5O2 powders synthesized by this novel route have several advantages as compared to its conventional synthesis techniques.  相似文献   

14.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

15.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

16.
We present the mechanism for the synthesis of a layered Li(Ni1/3Co1/3Mn1/3)O2 compound by a modified radiated gel method. Pure-phase Li(Ni1/3Co1/3Mn1/3)O2 material was achieved when the polymer gel was calcined at 900 °C between 15 and 30 h. The unit cell parameter c decreased, and a varied slightly with increased sintering time. Electrochemical characterization revealed that the optimized sample (25 h) had a high initial discharge capacity of 188 mAh/g (2.8-4.5 V, 20 mA/g), an excellent capacity retention of 90.1% after 30 cycles and a good rate performance.  相似文献   

17.
对静电纺丝法制备的TiO2和TiO2-V2O5纳米纤维进行光催化脱除模拟烟气中Hg0的研究。对纳米纤维进行了SEM、TEM、XRD、BET和UV-Vis检测。结果表明TiO2-V2O5纳米纤维为锐钛矿,V2O5高度分散在TiO2中。纤维直径在200 nm左右,由粒径为10 nm左右的微粒组成。掺杂V2O5后,纤维的吸光范围扩大,在可见光范围内的吸光度比纯TiO2时有了很大提高。实验研究了不同光照条件、V2O5的掺杂量和循环次数对脱汞的影响,分析了TiO2-V2O5催化脱汞的机理。当V2O5的质量含量为3%时,TiO2-V2O5在可见光下的脱汞率可达到66%,比纯TiO2时的7%有了显著提高;纤维的脱汞性能稳定,多次循环后紫外光和可见光下的脱汞率仍分别保持在80%和65%左右。电子的跃迁和电子、空穴的快速分离是TiO2-V2O5在可见光下脱汞率提高的主要原因。  相似文献   

18.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

19.
Pure and Ni-doped ZnO nanofibers were synthesized using the electrospinning method. The morphology, crystal structure and optical properties of the nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy, respectively. It is found that Ni doping does not change the morphology and crystal structures of the nanofibers, and the ultraviolet emissions of ZnO nanofibers present red shift with increasing Ni doping concentration. C2H2 sensing properties of the sensors based on the nanofibers were investigated. The results show that the C2H2 sensing properties of ZnO nanofibers are effectively improved by Ni doping, and 5 at% Ni-doped ZnO nanofibers exhibit a maximum sensitivity to C2H2 gas.  相似文献   

20.
SnO2 nanoparticle embedded TiO2 nanofibers were fabricated by a simple electrospinning method. The relationship between the SnO2/TiO2 weight ratio and photocatalytic efficiency was investigated from the view point of Rhodamine B decomposition. In addition, electron microscopic analysis, energy dispersive analysis, X-ray diffraction analysis, and photoluminescence study demonstrated that SnO2 nanoparticle was successfully embedded in TiO2 nanofibers. TiO2 nanofibers containing SnO2 nanoparticle provided an enhanced interfacial region between TiO2 and SnO2. SnO2 nanoparticles embedded TiO2 nanofibers exhibited highly efficient photocatalytic activity under UV light irradiation due to high charge separation of electron–hole pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号