首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
瓷质玻化砖磨抛加工磨具及加工工艺研究   总被引:2,自引:1,他引:1  
研究了用于手扶磨机磨抛瓷质玻化砖的磨具。通过磨抛试验,分析了粗磨和抛光前加工质量、精磨和抛光磨具等对抛光质量、磨削效率和磨具磨损的影响。  相似文献   

2.
瓷质玻化砖磨势加工磨具及加工工艺研究   总被引:1,自引:1,他引:0  
研究了用于手扶磨机磨抛瓷质玻化砖的磨具。磨抛试验,分析了粗磨和抛光前加工质量,精磨和抛光磨具等对抛光质量,磨削效率和磨具磨损的影响。  相似文献   

3.
一、前言筒式滚磨机是一种普遍采用的磨抛机械。但用它作为不锈钢刀、叉、勺之类工件的磨抛工艺,其资料还不多见。笔者用筒式滚磨机对不锈钢餐刀进行了磨抛工艺的研究,详细地介绍了这种磨抛工艺的方法和步骤。目前,对不锈钢刀、叉、勺之类的工件传统磨抛方法是采用砂轮磨削(粗磨),布轮抛光。这种磨抛工艺工序多,一把不锈钢刀具从毛坯到成品需要经过十几道工序,且劳动强度  相似文献   

4.
针对目前微电机转子轴无心外圆磨过程中砂轮修整频繁的问题,采用微晶陶瓷刚玉砂轮替代传统刚玉砂轮磨削微电机转子轴。通过搭建平面磨削工艺平台,参考无心磨砂轮修整及其磨削加工参数,从磨削温度、工件表面粗糙度、表面微观形貌、磨削比等方面,对比分析微晶陶瓷刚玉砂轮与传统刚玉砂轮的磨削性能。结果表明:相对传统刚玉砂轮,微晶陶瓷刚玉砂轮不仅有效改善磨削温度(降低38.5%),提高工件表面加工质量(表面粗糙度降低78.6%),还具有较高的砂轮磨削比(提高2.2倍)。选用微晶陶瓷刚玉砂轮对微电机转子轴进行无心磨生产线验证,结果表明:微电机转子轴无心磨样件的各项检测结果均满足实际生产指标要求,且较传统刚玉砂轮延长了1.6倍的修整周期,在提高加工质量的同时,显著提高了生产效率。   相似文献   

5.
通过对砂轮粒度、砂轮速度、磨削深度、进给速度等4因素及各因素之间交互3水平正交实验的数据分析,证明砂轮粒度对表面粗糙度影响最大,在各因素中起主导作用。发现砂轮粒度和砂轮速度的交互对表面粗糙度的影响大于砂轮速度单因素的影响,粒度和磨削深度的交互对表面粗糙度的影响大于磨削深度单因素的影响,砂轮粒度和工件速度的交互对表面粗糙度的影响大于工件速度单因素的影响。因此,应按砂轮粒度与切削用量的交互对表面粗糙度的影响规律来确定切削用量各参数的选择,而不能按单因素对表面粗糙度的影响规律来确定切削用量参数。  相似文献   

6.
磨削加工作为试样制备的最后一道工艺,对试样的表面质量影响很大.砂带抛光工艺相对于传统砂轮磨削来说,有效率高,质量好等优点,适于试样加工.通过一系列的正交实验和单因素实验,针对A-100材料,探索了抛光速度,进给速度,抛光深度和砂带粒度对试样表面完整性的影响.实验结果表明通过优化上述参数,减少试样表面残余应力,降低表面粗...  相似文献   

7.
用金刚石砂轮磨削氮化硅陶瓷材料时,后者容易产生表面破碎损伤.为检测和控制这种损伤,进行了不同工艺参数条件下的氮化硅陶瓷材料球面磨削实验,利用光学显微镜对磨削后的表面进行观察和分析,并获得磨削表面图片.采用表面破碎率衡量球面磨削表面的损伤程度,通过MATLAB软件对磨削后的表面形貌图进行分析及计算,并得出结论:表面破碎率随砂轮粒度的增大而减小,随磨削深度的增大而增大,随砂轮线速度和砂轮进给速率的增大而保持稳定.  相似文献   

8.
通过对砂轮粒度、砂轮速度、磨削深度、进给速度等4因素及各因素之间交互3水平正交实验的数据分析,证明砂轮粒度对表面粗糙度影响最大,在各因素中起主导作用.发现砂轮粒度和砂轮速度的交互对表面粗糙度的影响大于砂轮速度单因素的影响,粒度和磨削深度的交互对表面粗糙度的影响大于磨削深度单因素的影响,砂轮粒度和工件速度的交互对表面粗糙度的影响大于工件速度单因素的影响.因此,应按砂轮粒度与切削用量的交互对表面粗糙度的影响规律来确定切削用量各参数的选择,而不能按单因素对表面粗糙度的影响规律来确定切削用量参数.  相似文献   

9.
本文提出了用普通磨料开槽砂轮间断磨与砂页轮磨削陶瓷材料两种加工方案,试验研究了工艺参数对表面粗糙度的影响。结果表明,这两种方法磨削工程陶瓷是完全可行的,在一定的条件下可代替昂贵的金刚石砂轮粗磨与普通砂轮精磨工艺。  相似文献   

10.
针对合金淬硬钢20Cr2Ni4A在小直径砂轮磨削过程中,存在磨削力大、排屑难且磨损快的问题,考虑实际砂轮形貌特征,建立了砂轮磨削轨迹与磨屑厚度模型,揭示了砂轮尺寸及磨料参数对磨粒运动轨迹与磨屑厚度的影响规律。进一步建立了磨削表面线轮廓模型,并通过开展小直径CBN砂轮磨削合金淬硬钢20Cr2Ni4A实验,验证了模型的准确性。探究了磨削比能随磨削厚度的变化规律,结果表明当磨屑厚度小于0.02μm时,受尺寸效应影响,随着磨屑厚度增大,磨削比能由75 J/mm3降低至40 J/mm3。当未变形磨屑厚度大于0.02μm时,磨削比能随磨屑厚度变化不大。对比分析了进给速度对不同粒度小直径砂轮磨削力的影响规律,结果表明,当进给速度在400 mm/min以下时,粒度#200砂轮的磨削力与粒度#120砂轮的磨削力相差不大,选用粒度#200的砂轮可获得更好的磨削质量。开展不同粒度的小直径砂轮磨损对比试验,结果表明,粒度#120砂轮磨损类型主要为磨粒破碎,粒度#200砂轮磨损类型包括镀层划擦与磨料破碎,揭示了不同粒度的小直径砂轮磨损机制。  相似文献   

11.
为改善氧化铝陶瓷的磨削效果,分别使用粒度尺寸125~150 μm和38~45 μm的金刚石制备树脂结合剂砂轮,并进行磨削实验,研究表面粗糙度、材料去除方式和材料去除比例随磨削参数的变化规律,观察并分析氧化铝陶瓷磨削后的表面微观形貌。结果表明:氧化铝陶瓷的表面粗糙度可以达到Ra 0.418 μm,材料去除比例可达到95%;用粒度尺寸38~45 μm的金刚石制备的树脂结合剂砂轮在切深≤ 2 μm,工件移动速度为0.15 m/min加工时,材料由延性域的塑性去除转变为脆性去除。优化后的加工工艺为先以磨料粒度尺寸125~150 μm的树脂金刚石砂轮在切深为4 μm时进行初步加工,再用磨料粒度尺寸38~45 μm的树脂金刚石砂轮进行光磨,可以兼顾高效与精密两方面的要求。   相似文献   

12.
介绍了磨液射流磨削抛光实验装置的组成及实验过程,通过磨液射流磨削抛光钛合金(TC4)试件,取得了磨削抛光的工艺参数,为异型曲面工件的表面抛光探索了一种有效方法。  相似文献   

13.
聚氨酯橡胶是一种难切削加工非金属材料,材料软、弹性大且导热性较差,因此很难加工到要求的形状精度、尺寸精度及表面粗糙度。针对聚氨酯橡胶的这种加工性能,提出了聚氨酯摩擦盘的磨削加工工艺:先用成型法进行粗磨,再用成型法进行精磨和抛光。粗磨选用30#粒度的黑色碳化硅大气孔陶瓷结合剂砂轮,N级硬度,切削用量0.01mm,用电镀金刚石滚轮修整砂轮圆弧,成型磨削,可以保证聚氨酯摩擦盘的形状和位置精度(R=3.5-+00..1058,S/2=3±0.05mm);精磨选用具有抛光作用的120#白刚玉PVA砂轮,用电镀金刚石滚轮修整砂轮圆弧,精磨和抛光同时完成,可以保证聚氨酯摩擦盘的尺寸精度(ΦA=50±0.03mm)和表面粗糙度(Ra=0.4μm)。  相似文献   

14.
磨削力是反映磨削过程的重要参数,磨削力与被磨材料的性能和显微结构、磨削用量、砂轮特性以及材料去除机制等有着密切关系。从陶瓷磨削模型和工程陶瓷材料磨削过程中的材料去除机制出发,分析了陶瓷磨削过程,研究了磨削力的形成,分析了磨削力的特点,并从磨削力的影响因素出发,分别研究了陶瓷材料性能、磨削方向、砂轮磨削速度、工件速度、磨削深度和砂轮粒度对磨削力的影响,对陶瓷磨削理论有了进一步的认识。  相似文献   

15.
利用真空炉中钎焊工艺制作了钎焊金刚石砂轮,并对氧化铝陶瓷进行高速磨削的磨损研究.实验中,监测了磨削过程中每道磨削的磨削力特征,观察和统计了不同磨削阶段的砂轮表面磨粒磨损状态及变化情况,同时测量了磨粒的出刃高度.结果表明:在高的砂轮线速度和高的材料磨除率下,容易造成大量的磨粒断裂和完全破碎.仅有1.23%的金刚石磨粒是经历“完整-磨平—微破碎—半破碎—断裂(全破)”的失效过程,即磨粒理想的失效路径.通过对钎焊工艺、磨粒承受的载荷以及砂轮表面磨粒浓度和排布方式等因素的分析,阐明了文中钎焊金刚石砂轮中磨粒失效的原因.  相似文献   

16.
氧化物增韧陶瓷是一种高技术陶瓷材料,具有高强度、高韧性以及良好的耐磨、耐腐蚀性能。在一般的加工过程中,采用普通树脂砂轮对硬度较高的氧化铝增韧陶瓷材料进行磨削时,磨料的消耗比较快,磨削比较低,仅为8,10左右。通过ELID磨削对氧化铝陶瓷进行高效磨削实验,从砂轮速度、进给速度、砂轮粒度和砂轮电解活化钝化趋势等因素中,找到合适的加工工艺参数,使效率和精度达到最优。实验表明,砂轮速度和进给速度对磨削比影响较大;砂轮粒度和砂轮电解活化钝化趋势对表面质量影响较多。使用优化后的ELID磨削工艺使氧化铝陶瓷材料的加工效率提高了50%。磨削比增大到60~100。  相似文献   

17.
电镀金刚石砂轮面磨削氧化铝陶瓷的机理研究   总被引:1,自引:0,他引:1  
本文利用电子扫描电镜、观察了金刚石磨粒的微切削刃以及氧化铝陶瓷试件的磨削时的表面,已磨削表面,对电镀金刚石砂轮磨氧化铝陶瓷的机理进行了研究,指出了氧化铝陶瓷已磨削表面的缺陷以及脆性袭纹为主,磨削温度对材料去除过程影响很大,有可能存在非裂纹扩展的陶瓷材料去除方式。  相似文献   

18.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

19.
本文以Si3N4工程陶瓷为磨削对象,讨论软弹性修整后金刚石微粉砂轮的磨削力特性及磨削工件表面粗糙度特性,并研究磨削过程中微粉砂轮损耗规律以及工件磨除规律。同时同常规GC杯形砂轮磨削法修整、电火花法修整进行比较。  相似文献   

20.
目的解决铝合金手机外壳传统抛光工艺中存在的抛光效率低等问题。方法采用聚氨酯弹性砂轮对6061铝合金进行了磨削加工,使用正交试验研究了磨料粒度、进给速度、切削深度、砂轮线速度对加工表面粗糙度及材料去除率的影响。试验中使用折线走刀方式进行加工,可减轻磨料分布不均带来的影响。使用白光干涉仪测量了加工后表面的粗糙度,通过计算单位时间内工件的质量变化得出了去除率,并通过对结果的综合优化得出了最优工艺参数。结果在选取的16组磨削工艺参数中,可获得的最低表面粗糙度为44.87 nm,最大去除率为0.329 g/min。对表面粗糙度影响最大的因素为磨料粒度,影响最小的因素为进给速度;对材料去除率影响最大的因素为切削深度,影响最小的为进给速度。经过综合优化,最佳工艺参数组合为:砂轮600#,转速2000 r/min,切削深度0.04 mm,进给速度20 mm/min。结论弹性聚氨酯砂轮应用于铝合金磨削可提高加工表面质量,可简化工艺流程,节省备料和安装调整时间,从而提高效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号