首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Apoptosis is the physiological process by which unwanted cells in an organism are killed. Bcl-2, a membrane-bound cytoplasmic protein, and its close relative Bcl-xL, are both effective inhibitors of apoptosis induced by a wide variety of stimuli in many different cell types. In a previous study, we reported that suppression of apoptosis by Bcl-2 or Bcl-xL, markedly elevates the levels of radiation-induced mutations at the specific locus thymidine kinase. We investigated the effect of the Bcl-2 or Bcl-xL overproduction on hydrogen peroxide-induced mutagenesis. Oxidative DNA damage has been implicated in biological processes such as mutagenesis, carcinogenesis and aging. Overexpression of either Bcl-2 or Bcl-xL enhances oxidative stress mutagenesis in cells with wild type p53 as well as with mutated p53 protein. These results support the hypothesis that apoptosis plays a crucial role in maintaining genomic integrity by selectively eliminating highly mutated cells from the population.  相似文献   

2.
CD28 is a major coreceptor that regulates cell proliferation, anergy, and viability of T cells. The negative selection by T-cell receptor (TCR)-induced cell death of immature thymocytes as well as of activated human antigen-specific T-cell clone, requires a costimulatory signal that can be provided by CD28. Conversely, CD28-mediated signals increase expression of Bcl-XL, a survival gene, and promote survival of naive T cells cultured in the absence of antigen or costimulation. Because CD28 appears to both protect from, or induce T-cell death, one important question is to define the activation and cellular parameters that dictate the differential role of CD28 in T-cell apoptosis. Here, we compared different CD28 ligands for their ability to regulate TCR-induced cell death of a murine T-cell hybridoma. In these cells, TCR triggering induced expression of Fas and FasL, and cell death was prevented by anti-Fas blocking monoclonal antibody (MoAb). When provided as a costimulus, both CD28 MoAb and the B7.1 and B7.2 counter receptors downregulated, yet did not completely abolish T-cell receptor-induced apoptosis. This CD28 cosignal resulted in both upregulation of Bcl-XL and prevention of FasL expression. In marked contrast, when given as a single signal, CD28 MoAb or B7.1 and B7.2 induced FasL expression and resulted in T-cell death by apoptosis, which was dependent on the level of CD28 ligation. Furthermore, triggering of CD28 upregulated FasL and induced a marked T-cell death of previously activated normal peripheral T cells. Our results identify Fas and FasL as crucial targets of CD28 in T-cell death regulation and show that within the same cell population, depending on its engagement as a single signal or as a costimulus together with the TCR, CD28 can either induce a dose-dependent death signal or protect from cell death, respectively. These data provide important insights into the role of CD28 in T-cell homeostasis and its possible implication in neoplastic disorders.  相似文献   

3.
4.
During embryonic development, most neuronal populations undergo a process usually referred to as naturally occurring neuronal death. For motoneurons (MTNs) of the lumbar spinal cord of chick embryos, this process takes place in a well defined period of time, between embryonic days 6 and 10 (E6-E10). Neurotrophins (NTs) are the best characterized family of neurotrophic factors and exert their effects through activation of their specific Trk receptors. In vitro and in vivo studies have demonstrated that rodent motoneurons survive in response to BDNF, NT3, and NT4/5. In contrast, the trophic dependencies of chicken motoneurons have been difficult to elucidate, and various apparently conflicting reports have been published. In the present study, we describe how freshly isolated motoneurons from E5.5 chick embryos did not respond to any neurotrophin in vitro. Yet, because motoneurons were maintained alive in culture in the presence of muscle extract, they developed a delayed specific survival response to BDNF, NT3, and NT4/5 that is clearly dose-dependent, reaching saturation at doses of 100 pg/ml. This trophic response correlated with increasing expression of the corresponding functional receptors TrkB and TrkC. Moreover, TrkB receptor is able to become autophosphorylated and to activate classical intracellular signaling pathways such as the extracellular signal-regulated protein kinase when it is stimulated with its cognate ligand BDNF. Therefore, our results reconcile the reported differences between in vivo and in vitro studies on the ability of chicken MTNs to respond to some members of the neurotrophin family of trophic factors.  相似文献   

5.
Cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in the bile acid biosynthetic pathway, is thought to be regulated by hydrophobic bile acids through negative feedback control. The role of cholesterol in the regulation of cholesterol 7 alpha-hydroxylase is more controversial, in part because of incomplete understanding of the relationship between the pathways of cholesterol synthesis and degradation. The main objective of this study was to define the interaction between these two pathways in an experimental model in which the supply of newly synthesized cholesterol was interrupted by sustained infusion of mevinolin (lovastatin), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) or accelerated by a continuous infusion of mevalonate, a cholesterol precursor. The study was carried out in rats subjected to short-term bile fistula. In one set of experiments, rats were treated postoperatively with mevinolin (5 mg/kg loading dose followed by 2 mg/kg/hr infusion), mevalonate (180 mumol/hr infusion) or both for up to 96 hr. In a separate set of experiments, rats were infused intraduodenally with taurocholate (36 mumol/100 gm/hr for up to 96 hr). We determined cholesterol 7 alpha-hydroxylase- and HMG-CoA reductase specific activities at those time intervals, whereas bile acid synthesis rates were determined throughout the study. Compared with rats not subjected to surgery, rats with short-term biliary diversion had increases in cholesterol 7 alpha-hydroxylase activity of 259% and 827% at 48 and 96 hr, respectively. The increase in bile acid biosynthesis was less pronounced. Continuous infusion of mevinolin completely prevented increases in cholesterol 7 alpha-hydroxylase specific activity and bile acid biosynthesis at both time intervals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号