首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
由于多阈值图像分割的时候,Otsu算法计算量过大的问题,提出了基于细菌觅食优化算法的多阈值图像分割方法。首先,将细菌觅食优化算法中趋化操作中的固定步长进行动态调整。其次将原算法迁徙操作中细菌的随机驱散改成正负一的操作。与Otsu算法相比较而言,改进后的算法计算量明显减小。实验结果表明,该算法能够更快速,更准确的实现多阈值图像分割。  相似文献   

2.
本文提出了一种基于鱼群算法的二维阈值图像分割的新方法。传统的二维Otsu方法考虑了图像的灰度信息和像素间的空间邻域信息,是一种有效的图像分割方法。针对Ostu方法的计算量大、运行时间长的缺陷,采用鱼群算法来搜索最优二维阈值向量,通过鱼群追尾行为获得最优阈值。实验结果表明,所提出的方法不仅能得到理想的分割结果,而且分割速度快。  相似文献   

3.
基于图像区域的交互式文本图像阈值分割算法   总被引:1,自引:0,他引:1  
针对现有局部阈值分割算法因参数过多带来的参数选择问题以及在分割结果中块与块之间不连续性问题,利用用户提供的先验知识或经验,提出了一种基于灰度图像区域的交互式文本图像阈值分割算法.该方法首先粗略地将图像进行分块;利用标准差作为衡量图像块含有信息量(背景信息与目标信息)多少这一度量,接着按标准差大小对所有图像块进行排序;然后由用户输入交互式信息将所有图像块分为3个集合:仅含背景或仅含目标的图像块、含有少量背景或者是含有少量目标的图像块以及背景和目标分布比较均衡的图像块;最后对各个集合中的图像块分别按相应准则进行分割.实验结果表明,对于均匀和非均匀光照条件下的文本图像,与全局分割算法、直接分块分割算法和Chou方法相比,该方法在分割效果上有显著提升,而且执行效率也较高.另外,对于部分非文本图像也同样有效.  相似文献   

4.
模拟退火和并行遗传算法是两种较好的改进进化算法性能的方法.将这两种思想有机地结合起来,利用遗传算法能全局寻优的优势和模拟退火算法的爬山性能,提出T一种基于模拟退火并行遗传算法的Otsu双阈值医学图像分割算法.在该算法中,进化在多个不同的子群中并行进行,利用模拟退火算法的爬山性能,避免单种群进化过程中出现的过早收敛现象,...  相似文献   

5.
图像阈值分割是将灰度图像转换为二值图像的常用图像分割方式.经典多阈值Otsu算法对复杂图像进行分割取得了很好的效果,但是其采用穷举方法来寻找最优阈值是非常耗时的.针对这一问题,本文提出了一种基于细胞膜和自适应步长萤火虫混合优化算法的多阈值Otsu图像分割方法.利用萤火虫算法的启发式搜索来寻找图像分割的最优阈值很好地降低了算法的时间复杂度,并且在萤火虫算法中混合细胞膜算法很好地解决了萤火虫算法的"早熟"现象.实验结果表明,与经典多阈值Otsu法和萤火虫算法优化多阈值Otsu法相比,本文提出的算法具有更高的收敛速度和更好的图像分割效果,并且有效解决了萤火虫算法易陷入局部最优的问题.  相似文献   

6.
阈值法是一种简单且有效的图像分割技术。然而阈值求解的计算量随阈值的增加而呈指数级别增长,这给多阈值图像分割带来巨大挑战。为了克服计算量过大问题,视多阈值分割模型为优化问题,分别将Otsu法和Kapur法作为目标函数,采用回溯搜索优化算法求解目标函数,实现多阈值图像分割。将提出的多阈值分割算法应用于自然图像分割,并与其他算法比较,实验结果说明基于回溯搜索优化算法的多阈值图像分割技术是可行的,而且具有较好的分割效果。  相似文献   

7.
为了解决传统的Otsu法均分像素点的缺点以及Kapur法易受干扰的不稳定性,本文分析了这两种算法理论上的联系并结合它们的各自优势,提出一种新的算法,实现二者在图像阈值选取上的一种均衡。实验结果表明,新算法对图像直方图不具有明显双峰、目标像素点占比很小、图片存在干扰信息源等情况均能得到理想的分割效果。该算法可用于更大范围的图像分割处理,并且展现了更强的稳定性和自适应性。  相似文献   

8.
图像分割是由图像处理到图像分析的关键步骤,Otsu法是一种效果较好、实现简单的阈值分割方法。针对传统的Otsu阈值计算方法耗时较多、准则函数不一定单峰这一问题,提出了采用蚁群优化算法来求解阈值,并改进了传统的Otsu理论。分割效果表明该算法不仅提高了分割质量,而且缩短了寻优时间,从而说明了该算法的有效性,正确性。  相似文献   

9.
图像阈值分割算法实用技术研究与比较   总被引:1,自引:0,他引:1  
谭优  王泽勇 《微计算机信息》2007,23(24):298-299,233
在众多的图像分割技术中,阈值化技术是基于区域的图像分割技术,是图像分割中最重要而有效的技术之一。本文给出了几种常用图像阈值分割方法的原理和性能评价比较,并将一种应用最广泛的Otsu法的改进方法运用于机车入库系统中检测受电弓与滑板的磨耗情况,使维护人员无需上车检查;大大减轻了检修人员的劳动强度。  相似文献   

10.
自动图像阈值分割技术已经被广泛的应用在图像处理和计算机视觉领域中的目标检测,跟踪和识别上。其中Otsu阈值分割算法是一种被广泛使用的分割技术,对于那些直方图呈双峰分布的图像可以得到优秀的分割效果。然而如果直方图是单峰或是有异常数据出现时,传统的Otsu阈值分割算法则会发生错误。为改善传统Otsu法在处理图像时的计算受噪声干扰严重、实时性差、复杂度高等缺点,本文提出了一种改进的基于中值的Otsu阈值分割算法。最后进行的多次测试和实验说明这种改进的方法与传统的Otsu阈值分割算法相比较会得到更加满意的结果。  相似文献   

11.
基于模拟退火遗传算法的关联规则挖掘   总被引:10,自引:0,他引:10  
将模拟退火遗传算法加以改进,应用于关联规则挖掘,提出一种新的基于改进的模拟退火遗传算法的关联规则挖掘算法,并在该算法中,采用自适应方式动态选取交叉和变异概率,有效地抑制了早熟收敛现象,实验结果显示该方法能高效地解决关联规则挖掘问题。  相似文献   

12.
为了解决面向服务体系结构服务组合中服务选择问题,提出了一种将模拟退火算法与遗传算法相结合的融合算法。将服务流程等效成AOV图,对AOV图进行拓扑排序,并将生成的拓扑序列作为遗传算法的编码,使用QoS参数作为适应度,在遗传算法生成每一代子代后,利用模拟退火算法对其进行局部优化调整。仿真实验结果表明,模拟退火遗传算法在减少服务流程资源消耗上能取得理想的效果。  相似文献   

13.
为了快速有效地进行水彩非真实感绘制,综合考虑了工具材质的物理特性和视觉特征,提出一种基于模拟退火算法的水彩画计算机仿真方法.通过定义颜料颗粒解、产生函数和冷却进度表,并且利用解空间的迭代计算模拟水彩动静态属性.为了增加绘制效果真实感,利用Ashikhmin纹理映射算法合成水彩纸的自然背景纹理,并修正和迁移了光学库伯卡-芒克模型以融合纹理基质和颜料涂层,仿真了水彩肌理性特征.实验结果表明了该方法的有效性.  相似文献   

14.
基于模拟退火的样本加权FCM算法   总被引:1,自引:0,他引:1  
为了解决模糊C均值聚类算法(FCM)中聚类类数初始值是由先验知识人为确定并且目标函数忽略了样本属性数据之间的不均衡性问题,提出了一种基于模拟退火的样本加权FCM算法(SASWFCM),利用模拟退火算法可以寻求全局最优解的特点,计算出聚类数初始值,并对聚类中心和目标函数进行加权处理.通过实验分析,该算法与原FCM算法相比较而言,无需人为确定聚类初始值并且在分类准确数和准确率上有所提高,体现了算法的优越性,验证了改进后算法的实际价值.  相似文献   

15.
陈晓娟  陈婧 《计算机应用研究》2012,29(12):4680-4682
针对QoS的问题,设计了一种融合遗传算法和模拟退火算法的QoS路由算法,在遗传算法选择算子上借鉴了小生境的思想,避免了遗传初期有效基因的丢失;在遗传算法交叉算子和变异算子方面使用了自适应算子,使之能更好地适应网络的变化。通过与传统遗传算法进行比较,进一步说明了本算法的有效性。  相似文献   

16.
针对蝗虫优化算法容易陷入局部极值点、收敛速度慢、精度较差等缺点,提出曲线自适应和模拟退火蝗虫优化算法。首先,引入曲线自适应代替蝗虫优化算法关键参数的线性自适应,提高了算法的全局搜索能力;其次,在此基础上引入模拟退火算法,对蝗虫算法的劣势解具有一定概率的接收,使算法具有跳出局部最优,实现全局最优的能力。自适应缩小模拟退火中蝗虫位置随机解的范围,有利于进一步提高蝗虫算法的开发能力。通过测试函数测试,实验结果表明,改进的新算法具有更好的求解质量和收敛速度。  相似文献   

17.
二维Otsu图像分割算法将类间离散度矩阵的迹作为阈值识别函数,计算复杂度高且易导致分割错误,为此对二维Otsu算法进行改进,设计一种新的阈值识别函数.通过对比试验验证改进算法的有效性.  相似文献   

18.
针对传统模拟退火算法初始温度和降温函数难以确定以及接收劣质解同时容易遗失当前最优解等缺陷,将禁忌搜索算法的禁忌表功能引入SA算法,避免遗失最优解和对某个解进行多次重复地搜索;根据函数的复杂程度确定初始温度,并定义新的降温函数,提高算法的搜索效率和精度;引入捕食搜索策略,平衡算法搜索能力和开发能力,避免陷入局部最优。通过对5个典型的基准测试函数的仿真表明,改进算法具有较强的全局搜索能力,同时寻优精度和收敛速度比原算法也有较大的提高。  相似文献   

19.
刘翱  邓旭东  李维刚 《计算机应用》2016,36(11):3055-3061
针对标准萤火虫算法(FA),首先,从数学理论上分析并揭示了其存在的种群过早收敛、容易陷入局部最优等不足,然后提出一种基于模拟退火的混合萤火虫Memetic算法。该算法利用标准萤火虫算法对上一代种群进行全局搜索以保持种群的多样性和算法的全局探索能力;使用模拟退火算子对当前种群中的部分个体进行局部搜索,以一定概率接受适应度较差的个体以避免算法陷入局部最优,该算法同步进行萤火虫吸引过程和模拟退火过程以降低算法复杂度。最后,对该算法在10个标准测试函数上进行对比仿真实验。实验结果表明,该算法在6个测试函数中均能找到最优解,最优值、平均值、方差等指标比对比算法高出一定数量级,在4个复合函数中效果均优于萤火虫算法。  相似文献   

20.
首先给出了过程挖掘问题的形式化描述,然后提出了一种适合过程挖掘的并行组合模拟退火算法。该算法采用因果关系矩阵作为过程模型的编码,与同类算法相比,对适应度函数、交叉和变异算子进行了改进,并利用模拟退火算法的特性提高了算法的收敛速度。仿真实验表明该算法能较有效地处理日志噪声问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号