首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
采用差示扫描量热法(DSC)和热重分析法(TG)研究了5,5'-双(2,4,6-三硝基苯基)-2,2'-双(1,3,4-噁二唑)(TKX-55)常压(0.1 MPa)和5.0 MPa高压下的热分解性能,采用Kissinger和Ozawa方法计算了常压下TKX-55的热分解动力学参数,并与六硝基茋(HNS)对比,以研究分子结构及其性能的相关性。结果表明,高压下TKX-55的热分解行为与常压状态下相比,峰形更加尖锐,在5.0 MPa高压环境下TKX-55仍然保持较高的热稳定性,初始分解温度为355.69℃,比HNS初始分解温高约35℃。随着升温速率的增加,TKX-55及HNS的分解峰温均向高温方向偏移,而在不同升温速率下TKX-55的分解峰温均明显高于HNS。非线性等转化率积分法计算获得TKX-55的分解活化能为233.71 kJ·mol~(-1),HNS为197.87 kJ·mol~(-1),TKX-55的分解活化能明显高于HNS,表明TKX-55较HNS具有更加优异的热稳定性。  相似文献   

2.
以乙二醛为原料,经肟化合成了乙二肟、后经氯化合成了二氯乙二肟、后经叠氮化-环合反应合成1,1'-二羟基-5,5'-联四唑二水合物、最后经过中和反应合成了1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)。总收率为63%,并采用核磁共振、红外、质谱表征了其结构。优化并确定了反应最佳条件:叠氮化-环合反应时,以丙酮-水作为混合溶剂,反应温度为0℃,反应1.5 h后用乙醚萃取,萃取液不经过任何处理直接通入氯化氢气体进行环合反应得到1,1'-二羟基-5,5'-联四唑二水合物,收率为88%;酸碱中和反应时,以乙酸乙酯为溶剂,反应温度为50℃,反应2 h,抽滤并冰水水洗得到TKX-50,收率为94%。  相似文献   

3.
4.
为了研究5,5'-联四唑-1,1'-二氧二羟胺盐(TKX-50)基混合炸药的爆轰及安全性能,以F2314氟橡胶为粘结剂,采用淤浆捏合法制备了典型TKX-50基混合炸药。按照国军标(GJB-772A-1997)和自建的标准测试方法对炸药的爆轰性能(爆速、爆压、爆热、圆筒比动能)和安全性能(撞击感度、冲击波感度、热刺激感度)进行了测试,并将实测性能与PBX-9501等炸药进行了对比分析。结果表明,在爆轰性能方面,与PBX-9501相比,制备的TKX-50基混合炸药实测爆速值为9037 m·s~(-1)(密度1.860 g·cm~(-3)),但其爆热(5055 J·g~(-1))、爆压(26.4 GPa)和做功能力(1.377 kJ·g~(-1))较低。在安全性能方面,TKX-50原材料经重结晶后撞击感度可显著降低,最低撞击能由5J提高至32J,TKX-50基混合炸药的冲击波感度(L_(50)=15.1 mm)低于HMX基混合炸药(L_(50)=22.6 mm)。此外,TKX-50的热分解温度(240℃)、5 s爆发点(277℃)均低于HMX(285℃,327℃),以TKX-50为基的混合炸药在热刺激下更容易发生剧烈反应。  相似文献   

5.
周九九  马丛明  刘祖亮  姚其正 《含能材料》2017,25(12):1042-1045
以4-氨基-2,6-二氯吡啶为原料,经过硝化和缩合两步反应,合成出一种新型耐热炸药,4-氨基-2,6-双(5-氨基-1H-四唑基)-3,5-二硝基吡啶(ABDP),总收率为36%。采用核磁共振、质谱及元素分析对产物结构进行表征。分别研究了3-氨基-1,2,4-三氮唑和5-氨基四唑与4-氨基-2,6-二氯-3,5-二硝基吡啶的缩合反应,结果发现,3-氨基-1,2,4-三氮唑中伯胺和仲胺的亲核性相近,5-氨基四唑中仲胺的亲核性优于伯胺。用热重(TG)和差示扫描量热法(DSC)研究了ABDP的热分解性能,发现其在322 ℃有一个热分解峰,322 ℃时总热失重量为97%,采用Rothstein方法计算4-氨基-2,6-双(5-氨基-2H-四唑基)-3,5-二硝基吡啶的爆速为8823 m·s-1,爆压为36.72 GPa。  相似文献   

6.
1,1'-二羟基-5,5'-联四唑二羟胺盐(TKX-50)是目前引起广泛关注的新型含能离子盐。综述了TKX-50相关研究进展,包括其分子合成、晶体结构及相变、热力响应特性、爆轰性能、安全性、相容性及毒性。TKX-50因具有易合成、能量高、机械感度低和毒性低的优点而有一定的应用潜质。但是,与传统的CHNO含能材料相比,TKX-50具有不同的晶体组成、晶体中粒子间相互作用、热力性质及其内在本质,其不太理想的热安定性和相容性将限制其应用。这表明,以TKX-50为代表的含能离子盐的热力响应机制和释能机制可能不同于传统CHNO含能材料,有待于进一步研究。  相似文献   

7.
为研究耐热炸药2,4,8,10-四硝基-苯基吡啶基-1,3a,6,6a-四氮杂戊搭烯(NBTTP)的合成工艺及热性能,以苯并三氮唑和2-氯-3-硝基吡啶为原料,通过取代、环化和硝化三步反应合成出了耐热炸药NBTTP.采用红外光谱(FTIR)、核磁共振(NMR)对产物进行了结构表征,并对环化反应进行了工艺条件优化;采用差示扫描量热仪和热失重分析仪对NBTTP的热分解及热失重历程、热分解动力学及相关热爆炸参数进行了研究.结果表明:当亚磷酸三乙酯与1-(3-硝基-2-吡啶)-1H-苯并三唑(BTP)的投料比为3:1时,环化反应收率最高(83.44%);NBTTP仅存在一个剧烈的放热阶段,该放热阶段的起始分解温度为388.79℃,分解峰温在406.23℃;NBTTP的热分解反应动力学方程为dα/dt=(6.36×1014/β)(1-α)exp[-2.34×105/(RT)],热分解反应的活化熵、活化焓及活化自由能分别为23.60 J·mol-1·K-1、228.97 kJ·mol-1和213.46 kJ·mol-1;自加速分解温度TSADT为655.11 K.  相似文献   

8.
为研究新型富氮含能化合物5,5'-联四唑-1,1'-二氧二羟铵(TKX-50)高能钝感背后的微观机制,采用从头算分子动力学方法模拟了TKX-50在不同压力及温度下的分解过程,通过分析主要产物N_2的生成路径,揭示了TKX-50热分解随温度与压力变化的规律。模拟显示TKX-50分解的主要产物为H_2O和N_2。其中N_2存在三条主要的生成路径,两条来源于唑环环裂过程,另一条与铵盐和唑环的相互作用相关联。唑环环裂直接生成N2的过程受温度影响较大,温度越高,断裂速度越快,对压力不敏感。铵盐与唑环相互作用生成N_2的过程则依赖于扩散,扩散速率与温度呈正相关,与压力呈负相关。三条反应路径的共同作用使得TKX-50的反应速率宏观上呈现随温度升高而升高,随压力升高而下降的趋势。  相似文献   

9.
以3,4-双(3'-氨基呋咱基-4'-)氧化呋咱(BAFF)为原料,采用廉价易得且绿色环保的丙三醇为溶剂,经氯化亚锡还原合成关键中间体3,4-双(3'-氨基呋咱基-4'-)呋咱(BATF),后经过氧化氢氧化得到3,4-双(3'-硝基呋咱基-4'-)呋咱(BNTF),总收率为59.0%.采用1H NMR、13C NMR、IR、MS和元素分析对BATF和BNTF进行表征,并成功获得BNTF单晶结构数据,BNTF晶体为正交晶系,属P212121空间群,a=0.71437(10)nm,b=0.96839(11)nm,c=1.51555(17)nm,V=1.0484(2)nm3,Z=4,Dc=1.876 g·cm-3,F(000)=592;优化BNTF合成工艺,考察投料比、反应时间及反应温度对BNTF产率的影响,获得的最佳工艺条件为n(BATF):n(35%H2O2):n(98%H2SO4):n(Na2WO4··2H2O)=1:60:40:0.86,反应时间3 h,反应温度30℃,收率可达93.3%;采用DSC法和TG-DTG法测定BNTF的热稳定性,分别用Kissinger法、Rogers法和Arrenhis法计算BNTF热分解反应的表观活化能Ea(147.83 kJ·mol-1)、指前因子A(9.33×1015 min-1)和分解速率常数k(2.18×10-44),计算了BNTF的热爆炸临界温度(Tb=201.36℃);利用Kamlet-Jacobs方程估算得到BNTF的爆速(8.3 km·s-1)、爆压(31.3 GPa);分别按照GJB772A-1997方法601.2和602.1测试BNTF特性落高(H50=43.0 cm)和摩擦感度(36.0%).  相似文献   

10.
以乙二肟为原料,经取代、环化、硝化等五步反应合成了四联环含能化合物3,3'-双(2-硝胺基-1,3,4-噁二唑-4-基)-5,5'-联-1,2,4-噁二唑(BNOBO)。利用BNOBO的酸性,设计、合成了BNOBO的铵盐、肼盐和羟胺盐等三种含能离子盐(5-7)。并采用红外光谱、核磁等进行了结构表征。采用溶剂挥发法培养了BNOBO铵盐的晶体,该晶体属于单斜晶系,C2/c空间群,晶胞参数为a=1 2.7490(8) nm,b=9.5957(7) nm,c=18.5965(12) nm,V=2272.1 (3) nm~3,Z=4。利用差示扫描量热(DSC)和热重(TG)等热分析方法研究了BNOBO及其三种离子盐的热性能,基于密度仪获得的实测密度,运用EXPLO5 v6.02软件计算了目标化合物的爆轰性能,并利用BAM感度仪测试了撞击和摩擦感度。研究结果表明,所得化合物中BNOBO的热分解温度最高为21℃,其密度最高为1.90 g·cm~(-3)、BNOBO的计算爆速和爆压分别达到8789 m·s~(-1)和32.7 GPa,离子盐5的撞击感度大于20J,摩擦感度为220 N。  相似文献   

11.
为探究含能共晶TKX-55的热解机制及溶剂组分二氧六环(1,4-Dioxane,DIO)对含能组分5,5′-双(2,4,6-三硝基苯基)-2,2′-双(1,3,4-噁二唑)(BTNPBO)热解的影响,基于反应力场(ReaxFF-lg,Reactive Force Field-Low Gradients)开展了TKX-55和纯溶剂组分DIO的分子动力学模拟研究。结果表明,TKX-55的初始分解反应包括了含能分子的二聚反应、含能组分和溶剂组分之间的氢转移、含能组分中1,3,4-噁二唑的开环反应以及硝基解离。二聚反应为后续团簇的快速生长提供了条件,团簇的大量生成限制了热量的释放和稳定小分子产物的释放,这是TKX-55高耐热性的本质原因。纯溶剂组分体系低温下放热量较小,且不易形成团簇,在较高温度下放热量以及团簇的体积和数量明显增加。DIO分子在TKX-55中的主要作用是吸附活性小分子产物(如OH、NO、NO2等),间接抑制BTNPBO的分解进程。  相似文献   

12.
六硝基六氮杂异伍兹烷的制备工艺及性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了以四乙酰基二甲酰基六氮杂异伍兹烷(TADFIW)和四乙酰基二苄基六氮杂异伍兹烷(TADB IW)为硝解基质,经过硝解和转晶得到-εHNIW的热分解动力学参量和撞击感度,用电子扫描显微镜拍摄了ε-HNIW的晶体外貌。结果表明,两种-εHNIW的晶体外形相近,热分解动力学参量和撞击感度相同。这说明,两种-εHNIW样品的化学物理性质相同,虽然两种样品所含杂质不同,但对-εHNIW的热分解和撞击感度没有影响。  相似文献   

13.
以六氮杂三环十四烷并双呋咱(HTTD)[Ⅰ]为原料进行硝化,合成了五硝基六氮杂三环十四烷并双氧化呋咱(PHTTD)[Ⅱ]、乙酰基五硝基六氮杂三环十四烷并双氧化呋咱二水合物(APHTTD)[Ⅲ]和PHTTD[Ⅱc]及PHTTD[Ⅱ]与含氧分子(H2O、二氧六环等)形成相应的分子配合物[Ⅱa]、[Ⅱb]等,与含氧分子形成配(缔)合物是呋咱和氧化呋咱型稠环硝胺单质化合物的共性。利用元素分析、红外光谱、质谱对其结构进行了鉴定。  相似文献   

14.
15.
张坤  冯博  王晓峰  尚宇  席鹏  潘文  冯晓军 《含能材料》2022,30(7):673-680
为详细探究高氯酸铵基分子钙钛矿型含能材料(H2dabco)(NH4)(ClO43(DAP-4),/5,5"-联四唑-1,1"-二氧二羟铵(TKX-50)混合物的热分解特性(其中H2dabco2+为1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子),采用差示扫描量热法-热重/质谱/傅里叶红外光谱联用技术对比分析了DAP-4、DAP-4/TKX-50混合物的热分解特性和气体产物,利用固体原位红外技术对DAP-4、DAP-4/TKX-50混合物凝聚相特征基团随温度的变化进行了研究,最后推测出了DAP-4/TKX-50混合物热分解机理。结果表明,DAP-4与TKX-50混合后,DAP-4对TKX-50的热分解影响较小,TKX-50热分解产生的热量使DAP-4可逆相变吸热峰消失,但几乎不影响其高温下的热分解;DAP-4/TKX-50混合物热质量损失分为2个阶段,第一阶段质量损失为43.4%,第二阶段质量损失为52.4%,分解残渣剩余4.2%;DAP-4热分解产生的气体产物主要有NH3、H2O、HNCO、HCN、CO、HCl和CO2,DAP-4/TKX-50混合物热分解产生的气体产物主要有H2O、NO、N2O、HCl、NH3、N2、HNCO、HCN、CO和CO2。DAP-4/TKX-50混合物的热分解机理为:TKX-50分子内发生氢离子可逆转移,生成羟胺和1,1′-二羟基-5,5′联四唑(BTO);羟胺在高温下再继续分解为小分子气体,BTO分解产生的碎片部分聚合成偶联产物;最后,DAP-4离子键断裂,笼状骨架瞬间坍塌,强还原性和强氧化性气体组分在高温下发生剧烈氧化还原反应,并释放大量热。  相似文献   

16.
5,5′-肼基-双四唑(HBT)[1]为白色粉末,爆速9463 m·s-1,爆压36.7 GPa(计算值,EXPLO5code),冲击波感度(BAM methods)>30 J,氮含量83.3%,晶体密度(XRD实测)1.841 g·cm-3,是一种性能优良的高氮含能化合物,在气体发生剂、低特征  相似文献   

17.
马龙飞  徐滨  廖昕 《含能材料》2022,30(12):1197-1204
为改善1,1’-二羟基-5,5’-联四唑二羟胺盐(TKX-50)与硝化棉(NC)的相容性,采用1%、2%和3%浓度的硅烷偶联剂(KH550)乙醇溶液对TKX-50进行包覆,得到3种TKX-50/KH550复合材料TK1、TK2和TK3。采用扫描电镜、红外光谱仪和差示扫描量热仪研究了复合材料的形貌结构及热安定性能;采用绝热加速量热仪和差示扫描量热仪研究了TKX-50/KH550复合材料与硝化棉(NC)之间的相容性。结果表明,与原料TKX-50(138.86 kJ·mol-1)相比,TKX-50/KH550复合材料的热分解表观活化能分别增加了190.03、195.82、194.42 kJ·mol-1,TKX-50的热稳定性得到了提高;在绝热环境下,较TKX-50与NC混合体系,3种TKX-50/KH550复合材料与NC混合体系的初始热分解温度分别提高了14.93、18.18和17.90℃;相比TKX-50,TKX-50/KH550复合材料与NC的相容性等级从3级提升到2级,改善了TKX-50与NC的相容性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号