首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究匙羹藤总皂甙与β-环糊精包合物的制备工艺.采用饱和水溶液法,在单因素试验的基础上,通过正交试验,考察投料比、包合温度、包合时间对包合物收率和包合率的影响.最佳包合条件为:β-环糊精与匙羹藤总皂甙比例1:1,包合温度50℃,包合时间3 h.该制备工艺稳定,可用于匙羹藤总皂甙-β-环糊精包合物的制备.  相似文献   

2.
目的筛选槲皮素-β-环糊精包合物及槲皮素-羟丙基-β-环糊精包合物的最佳制备方法及工艺条件,并进行包合物的鉴定及溶解度测定。方法采用溶液搅拌法、超声波法和研磨法比较包合物的制备效果;溶液搅拌法的包合物制备工艺以包合得率为指标,分别考察投料摩尔比、包合温度、包合时间及溶液p H值对包合物得率的影响,并通过正交试验优化;采用薄层鉴别法及红外光谱法对包合物进行鉴定。结果通过比较包合物得率,采用溶液搅拌法制备槲皮素-β-CD和槲皮素-HP-β-CD包合物更好;包合物制备的最佳工艺条件为:投料摩尔比为1:1、制备温度为60℃、制备时间为2 h、溶液p H值为7;在此条件下制备槲皮素-β-CD包合物的平均包合得率为66.22%,制备槲皮素-HP-β-CD包合物平均得率可达71.49%;槲皮素-β-CD包合物溶解度为26.94μg/mL,槲皮素-HP-β-CD包合物在水中的溶解度可增加到2224.21μg/mL。槲皮素在0.8~6.4μg/mL浓度范围内呈良好的线性关系(r=0.9999)。结论溶液搅拌法使槲皮素与环糊精衍生物形成包合物,且明显增加了槲皮素在水中的溶解性,有利于药物在体内的吸收并提高了生物利用率。  相似文献   

3.
苯乙醇香精与β-环糊精包合物的制备工艺研究   总被引:7,自引:0,他引:7  
采用饱和水溶液法制备苯乙醇香精与β-环糊精包合物,通过正交实验确定出最佳工艺条件,即:苯乙醇香精与β-环糊精的配比为1∶6,包合温度为50℃,包合时间为2.5h;在此条件下苯乙醇香精与β-环糊精的包合率为84.75%。包合物紫外光谱的最大吸收波长和吸光度显示,苯乙醇香精与β-环糊精包合物和两者的混合物以及β-环糊精本身显著不同,验证了环糊精包合了苯乙醇香精分子。  相似文献   

4.
为了建立番茄红素-β环糊精包合物的制备工艺,以番茄红素为试验材料,采用饱和溶液法制备番茄红素-β环糊精包合物。以有机溶剂比例、主客体摩尔比、搅拌时间、搅拌温度、冷藏时间为考察因素,包合率为主要评价指标,采用单因素试验和正交试验对番茄红素-β环糊精包合物的制备工艺参数进行优化。试验结果表明:番茄红素-β环糊精包合物的最佳制备工艺参数为丙酮/正己烷(V/V)2︰1、番茄红素/β-环糊精(摩尔比)1︰200、搅拌时间20 h、搅拌温度50℃、冷藏时间12 h,在此条件下包合率高达71.8%。极差分析与方差分析结果表明,主客体摩尔比是影响包合效果最显著的因素。  相似文献   

5.
以收率和包合率为指标,采用饱和水溶液法制备核桃油-β-环糊精包合物,通过单因素和正交试验确定优化工艺条件,并考察产品氧化稳定性和水溶性。结果表明:最佳制备工艺条件为核桃油与β-环糊精质量比1:4、包合时间4.5h、包合温度65℃,此条件下包合率达81.6%、收率达61.6%;经紫外分光光度法检测,核桃油-β-环糊精已形成包合物,核桃油-β-环糊精包合物可明显提高核桃油的氧化稳定性和水溶性。  相似文献   

6.
研究星点设计-效应面法优化柚皮素-β-环糊精(NAR-β-CD)包合物的制备工艺。采用搅拌法制备NAR-β-CD包合物,以β-CD与NAR的投料质量比、包合时间、包合温度为自变量,以包封率、包合物得率为因变量,采用星点设计-效应面优化法,对结果进行多元线性回归和二项式拟合,经效应面法预测最佳工艺条件,并作验证试验。并比较NAR-β-CD包合物和NAR的累积溶出率。NAR-β-CD包合物的最佳工艺:β-CD与NAR投料质量比为5∶1,包合时间为1.412 h,包合温度为48.11℃。包合率和包合物得率预测值与理论值的偏差分别为1.43%、1.99%。NAR和NAR-β-CD包合物的累积溶出率分别为37.15%,为83.24%。  相似文献   

7.
以玫瑰香精和羟丙基-β-环糊精(HP-β-CD)为原料,采用水浴恒温磁力搅拌法制备玫瑰香精-HP-β-CD包合物;通过L9(34)正交试验对制备工艺进行了优化,并以挥发油包合率和包合产率为指标评价了包合工艺,利用红外(FT-IR)和薄层层析色谱(TLC)对包合物进行了表征。结果表明:HP-β-CD与玫瑰香精形成了包合物,且在包合过程中未改变玫瑰香精的化学成分,提高了玫瑰香精的缓释效果。最佳制备工艺:玫瑰香精1mL,m(HP-β-CD/g)︰V(玫瑰香精/mL)=6︰1,搅拌速度700 r/min,包合温度为50℃,包合时间为5 h。影响因素的大小依次为:包合温度>搅拌速度>玫瑰挥香精和H-β-CDP的投料比>包合时间。  相似文献   

8.
研究野坝子挥发油β-环糊精包合物的最佳制备工艺。采用饱和水溶液法制备野坝子挥发油β-环糊精包合物。以包合物的收率和包合物含油率为评价指标,采用正交设计法优选野坝子挥发油β-环糊精包合物的制备工艺条件,并使用薄层色谱法和紫外分光光度法对包合效果进行评价。结果表明,正交实验得到的最佳工艺条件:挥发油与β-环糊精的配比为1∶6 mL/g、包合温度为60℃、包合时间1.5 h,在此工艺条件下,β-环糊精包合物的收率和含油率均较高,可以推广应用。  相似文献   

9.
为了优化月见草油-β-环糊精包合物的制备工艺。采用饱和水溶液法制备月见草油β-环糊精包合物,以β-环糊精与月见草油的投料比、包合温度和包合时间为考察因素,月见草油包合物包合率和包合物得率的综合评分为指标,通过星点设计-响应面法优化制备工艺,经红外分析和差示扫描量热进行包合物形成的验证。最佳包合工艺为β-环糊精与月见草油投料比为5∶1 m L/g、包合温度55℃、包合时间1.8 h,在此最佳工艺条件下,月见草油-β-环糊精包合物的包合率和包合物得率分别为81.56%和92.28%。实验证明月见草油可与β-环糊精形成稳定的包合物,为月见草油的应用开发提供了理论基础。  相似文献   

10.
《粮食与油脂》2017,(11):30-33
采用饱和水溶液法制备苦荞黄酮β-环糊精包合物,对包合物的结构进行了透射电镜(SEM)、热重分析(TG)、X射线衍射分析(XRD)的表征。通过优化工艺条件,得出制备包合物的最佳工艺条件为苦荞黄酮与β-环糊精质量比6∶1、包合温度70℃、包合时间4 h。并进一步检测了苦荞黄酮β-环糊精的抗氧化性和稳定性。  相似文献   

11.
陈萌  雷克林  王玉娇等 《印染》2014,40(2):4-8,28
采用饱和溶液法制备艾蒿精油和一氯均三嗪-β-环糊精(MCT-β-CD)的包合物。通过正交试验得到制备包合物的优化工艺条件:MCT-β-CD:艾蒿精油=10 g:1 mL,包合温度50℃,包合时间4 h,搅拌速率为300 r/min。MCT-β-CD接枝棉织物的单因素试验优化工艺参数为:包合物80 g/L,Na2CO325 g/L,尿素10 g/L,焙烘温度140℃,焙烘时间6 min。棉织物的接枝增重率可达5.435%。红外光谱图和热分析表征MCT-β-CD已成功接枝到棉织物上,接枝后的棉织物具有较好的驱蚊效果,且可耐水洗15次以上。  相似文献   

12.
梅片树叶挥发油/β-环糊精包合物的制备研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用饱和水溶液法、超声法、研磨法对梅片树叶挥发油进行包合,以综合评分为指标,筛选最佳包合方法。采用L9(34)正交试验设计,考察了投料比、包合时间以及包合温度对包合物的得率和包合率的影响,筛选出饱和水溶液法制备包合物的最佳工艺参数。结果表明,制备包合物的最佳工艺条件为:梅片树叶挥发油与β-环糊精投料比为1:8,包合温度为30℃,包合时间为50 min,在此条件下,得到包合物的得率和包合率分别是75.64%和88.42%,说明本工艺具有良好的得率和包合率,这对于开发梅片树叶挥发油的药用价值提供了研究思路和理论基础。  相似文献   

13.
为改善乳酸链球菌素(Nisin)的水溶性,采用饱和水溶液法,用β-环糊精(β-cyclodextrinβ-CD)对其进行包合。通过正交实验得到其最优条件为pH=3,摩尔比Nisin∶β-CD=1∶2,包合温度40℃,此时Nisin最优包合率达到34.46%。傅里叶变换红外光谱分析与差式扫描量热分析表明,Nisin和β-CD形成包合物,结构发生变化。在抑菌实验中,Nisin/β-CD包合物对金黄色葡萄球菌和枯草芽孢杆菌的抑菌活性与Nisin相比无显著性差异。  相似文献   

14.
β-胡萝卜素-β-环糊精包合物制备工艺的优化   总被引:2,自引:0,他引:2  
采用饱和水溶液法进行β-胡萝卜素-β-环糊精包合物的制备,通过正交实验确定了最佳工艺条件:β-环糊精与β-胡萝卜素的分子摩尔比4.5∶1;温度50℃;转速600r/min,搅拌时间7h,包合率高达83.18%。于40℃,5000LX条件下进行光稳定性加速实验,结果表明,包合物稳定性与β-胡萝卜素样品相比较有了很大提高。  相似文献   

15.
利用共沉淀法分别制备丁酸乙酯与β-和γ-环糊精包合物。正交试验表明:制备β-环糊精包合物的最佳参数为,丁酸乙酯与β-环糊精的摩尔比为1∶1、超声30 min、超声温度50℃,可获最大包合率为46.69%;制备γ-环糊精包合物的最佳参数为,丁酸乙酯与γ-环糊精的摩尔比为1∶1、超声45 min、超声温度60℃,可获最大包合率为95.59%。通过扫描电镜、红外及X-衍射对包合物的分析,证明了丁酸乙酯与2种环糊精包合物的形成。综合结果显示,γ-环糊精更适合包埋丁酸乙酯类风味小分子。  相似文献   

16.
印奇果油-羟丙基-β-环糊精包合物制备工艺研究   总被引:1,自引:0,他引:1  
目的制备印奇果油-羟丙基-β-环糊精包合物。方法采用饱和溶液法制备印奇果油-羟丙基-β-环糊精包合物;采用L9(34)正交设计,优化印奇果油-羟丙基-β-环糊精包合物制备工艺;采用喷雾干燥法将其制备成粉末;采用单因素分析法优化印奇果油-羟丙基-β-环糊精包合物的最佳喷雾干燥工艺。结果以包合率为指标,印奇果油-羟丙基-β-环糊精包合物的最佳制备工艺为A2B1C2,即当包合温度为60℃,搅拌时间为30 min,药液滴加速度为1 m L/min时,包合率最高。按最佳工艺参数进行3次平行试验,平均包合率为36.94%,相对标准偏差(RSD)为1.06%。结论以最佳工艺制备包合物,工艺稳定可行。  相似文献   

17.
目的筛选β-环糊精(β-CD)包合罗勒挥发油的最佳工艺。方法采用响应面分析试验,以挥发油包合率、包合物产率为主要筛选指标,选出制备罗勒油-β-CD包合物的最佳包合条件;采用显微镜法、薄层色谱法和紫外分光光度法验证了包合物的形成。结果最佳包合工艺为罗勒油-β-CD为1︰8.5(w/w),包合时间72 min,包合温度41.0℃。结论采用响应面法优化得出的包合工艺合理,包合率高。  相似文献   

18.
采用超声法制备牡丹籽油-羟丙基-β-环糊精(牡丹籽油-HP-β-CD)包合物,以包合率和包合物得率的综合评分OD值为评价指标,在单因素试验基础上采用Box-Behnken响应面法优化包合工艺条件。确定牡丹籽油-HP-β-CD包合物的最佳制备工艺条件为:超声功率360 W,包合温度46.5℃,牡丹籽油与HP-β-CD质量比1∶6.6。在最佳工艺条件下,包合物得率为85.53%,包合率为92.00%,综合评分OD值为89.41%。经红外光谱法鉴别,已形成牡丹籽油-HP-β-CD包合物。  相似文献   

19.
通过单因素试验,考察β-CD与茶树精油的比值、温度、时间、超声时间对茶树精油包合率的影响,采用Box-Behnken试验设计和响应面分析优化饱和水溶液法制备茶树精油微胶囊的包合工艺,并进行包合产品储藏稳定性分析。结果显示最佳的包合条件为:β-环糊精与茶树精油比值11:1(g/g)、温度67 °C、时间60 min,包合率约59.24%;且制备的茶树精油β-CD包合物在常温下保存一个月,茶树精油保留率约67%,这证实β-CD的包合作用对茶树精油有一定的保护作用,且为其应用开发提供理论基础。  相似文献   

20.
目的:基于β-环糊精制备栀子蓝色素包合物,评价其光稳定性效果。方法:采用超声辅助饱和水溶液法制备栀子蓝色素β-环糊精包合物,通过红外光谱及扫描电镜对其进行定性表征,利用单因素逐级试验及正交优化确定包合物形成的最佳工艺条件,考察包合物在不同光照条件下的稳定性。结果:红外光谱及扫描电镜结果显示,包合后得到的物质不是栀子蓝色素和β-环糊精的简单混合,而是栀子蓝色素和β-环糊精形成的新固相包合体;包合的最佳工艺条件:色素添加量2 g,加热温度50℃,搅拌时间3.5 h,超声处理1 h;栀子蓝色素β-环糊精包合物在灯光照射、日光照射及紫外照射3种条件下的光稳定性明显高于未包合色素。结论:通过β-环糊精包合色素可显著提高栀子蓝色素的光稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号