首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
以直流输电换流阀均压电极密封圈失效问题为研究对象,对密封圈产品失效形态及析出化学物质进行分析。初步判定该密封圈失效可能是由于产品运行振动磨损所致;从均压电极及密封圈使用工况进行分析,通过仿真软件模拟均压电极在水路中的运行状态;设计出一种等效的均压电极及密封圈振动试验系统。试验结果表明:由于均压电极插针的振动,导致均压电极密封圈磨损并析出黑色粉末状物质,均压电极密封圈失效与均压电极的振动运行环境有直接关系。仿真分析及等效试验结果为均压电极密封圈失效改进方案的研究提供了参考  相似文献   

2.
目的研究高压直流换流阀散热器的腐蚀机理及其防控技术。方法通过搭建散热器水冷系统运行平台,搭载化学镀镍和未镀镍两种不同的水冷散热器,研究水冷内流道的腐蚀情况及其影响。通过SEM及元素分析仪分析腐蚀情况及腐蚀产物的组成,并通过万能试验机对金属材质的力学性能进行研究,推导腐蚀机理。另外,对比镀镍和未镀镍水冷器换热效率的变化规律。结果成功搭建能评估水冷散热器腐蚀性能的试验平台,且在试验平台模拟下,镀镍的水冷散热器在水冷设备上运行3个月后表面光亮,无明显腐蚀物和腐蚀痕迹;而未镀镍的水冷散热器宏观微观上都有较明显的腐蚀产物,主要为含羟基铝石、硫酸铝以及氯化铝等物质,且化学镀镍阴极保护处理后,可使流体在对流换热时的导热热阻减小,让流体在流道里面的流动变成剧烈无序的湍流状态。结论采用化学镀镍的冷却系统的耐腐蚀性能更为优异,且同时可降低水冷散热器的热阻,从而强化换热效果,改善了水冷散热器的换热性能。  相似文献   

3.
4.
介绍了四川省电力科学院在超特高压换流阀内冷水系统腐蚀方面的研究进展,及在四川境内超特高压换流站的实际应用情况,并创新性地提出在离子交换器出口设置超滤系统,阻挡离子交换树脂降解产物的新型技术措施,以供探究和参考。  相似文献   

5.
对液压滑阀台肩均压润滑槽进行了数字模拟研究。主要通过研究国外公司均压润滑槽的位置和结构尺寸设计实例,分析阀芯台肩所开设的矩形均压润滑槽尺寸及位置对减小卡紧力的作用原理,并与传统均压槽开设方式对卡紧力减小效果进行对比。通过研究均压润滑槽的位置和结构尺寸设计对卡紧力以及泄漏量的影响关系,得到了均压润滑槽最优位置及合理的结构尺寸。  相似文献   

6.
韩伟  李冬冬  童洲  谈毅 《电焊机》2024,(3):112-117
针对车门翼板高强度双相钢机器人点焊中因为电极压力控制不当而出现的压痕、变形和扭曲等缺陷,分析电极压力对点焊质量的影响。采用ANSYS数值模拟软件比较分析不同电极压力下板材等效压力变化情况,分析结果显示,相较于电极压力为4 000 N,电极压力为3 000 N时,焊点等效压力波动较小,塑性变形也相对较小。针对车门翼板点焊,确定了合理的点焊电极压力为3 300 N,并设计了分阶段控制曲线,通过FANUC点焊控制系统对电极压力进行实时监测和补偿,有效控制了电极压力的波动。此外,利用均压平衡宏程序,可以根据板材形状变化和电极磨损等因素实时调整电极压力。试验结果表明,采用均压平衡控制后,电极压力波动控制在±5%以内,焊点表面压痕深度减少约20%,焊点质量明显提升。  相似文献   

7.
为研究换流阀设备水路中均压电极铂针在水流激励下的力学性能,利用CREO软件建立均压电极铂针流场的三维模型,将处理后的模型导入ANSYS Workbench平台,通过双向耦合模块将Fluent和Transient structural连接,并将数据传输接口定义在流固耦合界面上。考虑水流的周期波动特性,对离散后的有限元模型进行双向流固耦合下的瞬态分析,获得铂针的应力、应变动态响应曲线。通过对铂针进行力学性能试验得到其抗弯强度,得出结论:铂针在单端固定的方式下,其最大应力远小于材料抗弯强度,满足工程使用要求。  相似文献   

8.
西部油田油管腐蚀结垢机理研究   总被引:4,自引:0,他引:4  
通过对西部某油田油管腐蚀结垢现状调查、单井采出液成分分析和垢样XRD分析,结合油管结垢趋势预测及室内高温高压腐蚀试验,探讨了油管腐蚀结垢机理。结果表明:垢物主要是CaCO3、CaSO4和铁锈产物,在结垢出现的同时伴随油管腐蚀的发生。影响油管腐蚀结垢的主要因素是采出液中含有丰富的的Ca^2+、HCO3^-,Cl^-以及原油伴生气中的CO2含量较多。该油田存在严重的腐蚀结垢趋势。  相似文献   

9.
在液力自动变速器液压控制系统中,换挡操纵对工作压力的需求在不同工况下有较大的变化,因此常采用多级主压阀。在工作过程中,溢流量变化会导致主压阀出现定压误差,进而影响系统的性能。为提高主压阀的定压精度,提出针对多级主压阀的比例主压控制策略。介绍多级主压阀的工作原理,推导多级主压阀的数学模型,并在Simulink中对多级主压阀调压特性进行动态仿真。提出在反馈腔连接比例减压阀的方法,通过闭环控制比例减压阀输出压力,实现反馈腔的压力在一定范围内连续变化,从而实现主压阀输出压力的连续变化。最后提出针对主压的压力闭环控制策略,提高主压匹配精度。结果表明:多级主压阀面对不同工况时可以快速实现压力调定,通过比例减压阀可以实现对主压的连续控制,提高了系统的定压精度,优化了负载流量突增导致的压力降低现象。  相似文献   

10.
为满足高质量的钛及钛合金电极生产需求,优化完善了钛及钛合金电极整体成形工艺路线,使其更为高效短流程、绿色低碳,分析了海绵钛的压制变形过程,建立了整体成形压制力模型。并在5 MN挤压实验台上进行了小块电极压制试验,得到电极压制成形力学模型的重要参数,构建了电极成形密度-工艺参数数学模型。通过电极整体成形工艺试验验证了模型的正确性与该工艺路线的可行性。  相似文献   

11.
提出一种利用压电陶瓷片直接驱动的伺服阀,分析了双压电晶片的静、动态特性,制造了双晶片直接驱动式伺服阀样机.该伺服阀具有高于传统电磁式伺服阀的频宽与分辨率,它的机械结构简单,抗干扰能力强.  相似文献   

12.
对单腔体压电叠堆泵进行了结构设计,并制作了实验用样机.分析了阀的工作原理,在阀体选择上选用了一种简单的薄膜阀.设计了正弦信号发生器电路,将产生的正弦信号经过电压放大和功率放大后,作为该泵的电源驱动,并对该泵的工作性能进行较为系统的实验测试和研究.实验测试表明:该泵工作性能稳定,其流量的最佳工作频率约为25Hz,输出压力的最佳工作频率约为7Hz.  相似文献   

13.
针对目前航空工业对高频响、高精度的射流管伺服阀需求,设计了一款压电叠堆驱动式射流管伺服阀,分析了其工作原理,研究了伺服阀的射流区及滑阀的特性,建立了其动力学模型,并通过仿真试验将其与传统的电磁式射流管伺服阀进行了对比分析。仿真试验结果表明:该型压电叠堆驱动式射流管伺服阀与电磁式射流管伺服阀相比,响应速度提升0.8 ms、频响提升5倍、稳定性好、控制精度高,且能达到需求的滑阀位移。该压电式射流管伺服阀的设计为改进传统的射流管伺服阀提供了一种新的方法。  相似文献   

14.
一种基于压电堆驱动器的喷嘴挡板式气体控制阀的研究   总被引:1,自引:0,他引:1  
针对当前气体压电阀普遍存在的工作压力低、输出流量小的问题,设计了一种基于压电堆驱动器的喷嘴挡板式控制阀,对控制阀的柔性铰链挡板进行了设计和动力学分析,对阀的最大流量作了估算.最后进行了实验研究,结果表明:所设计的压电阀响应较快、允许工作压力高、输出流量大.  相似文献   

15.
提出一种压电陶瓷片直接驱动的气动伺服阀,分析该伺服阀的工作原理,并采用解析法建立其动力学模型。分别用M atlab和AMES im软件对其进行仿真分析。仿真结果表明:该伺服阀的频宽为1 348 Hz,高于传统电磁式伺服阀的;响应时间为2.3 m s,比普通电磁阀快10~15倍;其还具有机械结构简单、抗干扰能力强、动态特性好等特点。  相似文献   

16.
针对电火花加工技术的特点,开发、研制了新型的压电自适应微细电火花加工装置,分析了该装置的加工原理.该装置有别于常规的微型电火花加工装置,可实现放电间隙与放电状态的自适应调节,促进排屑,能有效控制提弧及短路现象的出现,并能实现短路自消除,从而大幅度提高加工效率.通过大量实验,分析了各参数对电极相对损耗率的影响.实验结果表明:电极相对损耗率随开路电压和电容值的增大而增大,限流电阻R1和R2对电极相对损耗率有一定的影响.  相似文献   

17.
尹杰  何彪  鲜雪萍  刘辞英 《机床与液压》2017,45(20):107-109
在AMESim液压系统仿真软件中建立了液压平衡阀的模型,并根据实际参数搭建了液压平衡回路的系统模型。对几种典型工况下平衡阀的动态特性进行仿真,得出不同主阀芯节流槽结构下平衡阀主阀芯的速度响应曲线、位移响应曲线、主阀流量响应曲线、主阀口压力响应曲线、液压缸速度响应曲线,对仿真结果进行对比分析,得出主阀芯节流槽结构对液压平衡阀动态特性的影响。  相似文献   

18.
柳波  文圣明  陈果 《机床与液压》2020,48(1):121-125
为了降低液压运输车在复杂工程路面行驶过程中出现时候的速度异常波动,利用半桥液阻网络对马达进口压力与平衡阀先导压力进行分离,调节平衡阀开启的实际先导比。针对平衡阀先导压力进行稳定控制,提高了行走马达流量稳定性。应用流体力学理论,建立平衡阀动态数学模型并进行系统仿真分析。分析结果表明:应用半桥液阻网络能够有效减小先导压力波动,使平衡阀阀芯位移相对稳定,当阻尼孔A与阻尼孔B直径同为0.6 mm时,行走马达流量平稳性提高了71.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号