共查询到19条相似文献,搜索用时 62 毫秒
1.
六足仿生机器人因其灵活度好、可靠性高、适应性强等特点而得到广泛应用;针对六足仿生巡检机器人,从结构设计、步态规划、系统仿真和实物构建等方面,探索一般意义上系统设计和实现方法;首先设计了六足仿生机器人的多关节机械结构,并给出了此类系统的量化建模方法;然后采用了重心随动的三角步态规划方法,对系统稳定性和典型步态规划进行了量化分析;在此基础上基于标准D-H参数法建立了机器人的运动学模型,并且通过仿真实现了六足机器人向前纵向行走和向右横向行走的直线平稳运动;最后通过六足仿生巡检机器人实物测试,验证了所设计的结构和步态规划方法的可行性和有效性。 相似文献
2.
3.
4.
5.
针对仿生六足机器人作业任务的具体情况,设计了一款具有USB接口的图像采集卡;该采集卡采用FPGA/CPLD进行图像采集和控制,通过USB接口完成图像数据的传输,具有体积小、速度快、功耗低和实时性好等特点;由于该采集卡是仿生六足机器人视觉子系统的重要组成部分,在视觉子系统中应与其他器件进行合理挂接,因而必须妥善解决USB驱动问题;通过研究和探索,编写了USB设备驱动程序,并使用2个URB来轮流读取,提高了接收效率;调试编译的结果表明该USB设备驱动程序具有良好的实时性和可移植性,有效提高了仿生六足机器人视觉子系统的工作效率。 相似文献
6.
7.
8.
9.
介绍了一种微型六足机器人的新结构,该设计将直线行进运动与转向运动合理地结合了起来;着重介绍了基于IO板的机器人控制系统VB软件设计,并分析了机器人的运动稳定性和灵活性;最后是实验结果和分析;按照文章叙述成功制作了机器人样机——“银甲虫1号”,其大小为:半径3cm,高4.2cm,重49g;实验证明“银甲虫1号”运动灵活可靠,有很好的机动性。 相似文献
10.
仿生六足机器人多电机控制系统的研究与设计 总被引:1,自引:0,他引:1
以电机专用控制芯片F2812 DSP为核心构建了仿生六足机器人多电机控制系统.设计和编制了相应的硬件电路和软件流程,使PWM周期达到20μs左右,将机器人控制系统的整体性能大大提高;仿真实验结果证明,该控制系统运行稳定、性能可靠,为仿生六足机器人技术的进一步完善奠定了基础;所探讨的技术方法和设计思路还可为其他类型机器人的开发和研制提供借鉴和参考。 相似文献
11.
为了更好地控制六足仿生机器人适应野外作业环境,针对机器人野外定位问题,提出了一种六足仿生减灾救援机器人无线野外定位系统解决方案,方案以三星S3C2440为硬件平台,以嵌入式linux系统为软件平台,设计了六足仿生机器人野外定位系统。通过GPS全球定位系统进行六足仿生机器人的定位,利用GPRS实现网络通信,并将定位信息传输到终端设备,终端设备通过发送命令的方式控制六足仿生机器人实现相应的动作。实验证明:该系统的稳定性好,可靠性较高,能较好的满足六足仿生减灾救援机器人野外定位的需求。 相似文献
12.
This paper proposes a new legged walking method for a novel passive-spine hexapod robot. This robot consists of several body segments connected by passive body joints. Each of the body segments carries two 1-DoF (degree of freedom) actuated legs. The robot is capable of achieving planar legged walking by rapidly abducting and adducting its legs. To model the mobility of a robot based on this simple design, the candidate configurations from all possible configurations are first selected in a mobility analysis of the robot based on the screw theory. All the feasible sequences of these candidate configurations are then searched to form planar locomotion gaits. Next, locomotive performance of the gaits is analyzed. Finally, the proposed locomotion design and gait planning methods are verified through simulations and experiments. 相似文献
13.
This paper presents the design and control of Q-Whex, an untethered, quasi-wheeled hexapod robot. Q-Whex has only six actuators—one motor located at each hip—achieving mechanical simplicity that promotes reliable and robust operation in real-world tasks. All of the robot's mechanical parts are simply fabricated with carbon fiber plates, which makes the robot very easy to make. Q-Whex is capable of performing wheeled-like smooth rides over flat ground with a tripod gait, and thereby prevent the common problem of trunk fluctuations in legged-wheel robots. It is also able to traverse height variations well exceeding its trunk clearance. The performance of Q-Whex is evaluated in various scenarios, including driving and turning over flat terrains, ramp-riding, step-crossing, stair-climbing, and irregular terrain-traversing. 相似文献
14.
AbstractIn this paper, the design, the development, and the control for an 18 degree-of-freedom electrohydraulic hexapod robot for subsea operations are presented. The hexapod, called HexaTerra, can be equipped with a trenching machine, and move over obstacles and on sloped terrain. Optimization techniques are employed to size the robot legs. Rigid body equations of motion and hydraulic dynamics are developed. Compact electrohydraulic components are sized and selected taking into account the leg kinematics and system dynamic analysis. A model-based control system design is implemented in a real-time environment, able to produce the overall functionality and performance. Experimental results obtained from preliminary tests with the developed electrohydraulic hexapod show good controlled performance and demonstrate excellent system stability over obstacles. 相似文献
15.
Improper maintenance, repair, and operations of societal centric structures can lead to catastrophic failures that drastically affect global economy, the environment, and everyday life. Due to the remote, cramped and highly irregular environmental nature of these structures, routine manual procedures and operations can be rather tedious, dangerous, and hazardous for humans. Automating maintenance, repair, and operations removes human workers from having to crawl within highly cluttered and constrained spaces, breathing in stale air mixed with fumes from welding or particulate from repair work, and provides higher reliability and consistency in the repair work. This paper introduces SHeRo, a scalable hexapod robot designed for maintenance, repair, and operations within remote, inaccessible, irregular, and hazardous environments. The scalability of the design enhances traditional hexapod robot designs by incorporating two prismatic joints into each leg. A detailed discussion on the design and realization of SHeRo is provided. An analysis on the stability and workspace of SHeRo is presented and a dynamic criterion is developed to integrate the concepts of robot stability and constant orientation workspace into a stable workspace. The analytical solution of the lateral stable workspace of SHeRo is derived along with a metric for comparing stable workspace between different robot configurations. A simulated demonstration and two physical experimental demonstrations are presented showing the advantage of introducing scalability into the hexapod robot design along with the workspace enhancement and flexibility of the scalable hexapod robot. 相似文献
16.
中枢模式发生器(CPG)在六足机器人的运动步态控制中起着至关重要的作用。为了研究六足机器人的运动控制方法,首先基于仿生学原理设计了六足机器人的机械结构,并在虚拟样机软件ADAMS中搭建其三维模型;其次选择Hopf振荡器作为CPG单元,并改进了振荡器模型;然后设计了六足机器人的CPG网络拓扑结构,包含单腿关节映射函数方案和腿间CPG环形耦合网络方案,并对其进行了改进;最后通过ADAMS和MATLAB联合仿真实验,验证了所设计六足机器人的运动稳定性和CPG控制方案的可行性与有效性。仿真结果表明,该方法能够满足六足机器人不同运动步态的控制需求,对六足机器人的运动控制具有一定的实际应用价值。 相似文献
17.
Ryuichi Hodoshima Yoshikazu Ohura Yuki Nishiyama Akihiro Sakaki Soichiro Watanabe Shinya Kotosaka 《Advanced Robotics》2016,30(23):1467-1483
This paper reports the design of a new hexapod walking robot, ASURA I, inspired by the physical features of a harvestman’s behavior. ASURA I has a special mobile form with one compact body and much longer legs than conventional hexapod walking robots. This form enhances the walking performance of the robot on rocky or uneven terrain. Here, we present the design and analysis of the leg mechanism, body structure design, gait planning, and prototype development. The long legs (relative to the body) are managed by special parallel link mechanisms, which powerfully and effectively drive the leg joints. The leg mechanism is analyzed by its kinematics, singularity, and static characteristics. The leg length and weight of ASURA I is 1.3 m and 27 kg, respectively. The alternating tripod and wave gaits of ASURA I are successfully demonstrated in a series of walking experiments. 相似文献
18.
Insects can perform versatile locomotion behaviors such as multiple gaits, adapting to different terrains, fast escaping, etc. However, most of the existing bio-inspired legged robots do not possess such walking ability, especially when they walk on irregular terrains. To tackle this challenge, a central pattern generator (CPG)-based locomotion control methodology is proposed, integrated with a contact force feedback function. In this approach, multiple gaits are produced by the CFG module. After passing through a post-processing circuit and a delay-line, the control signal is fed into six trajectory generators to generate predefined feet trajectories for the six legs. Then, force feedback is employed to adjust these trajectories so as to adapt the robot to rough terrains. Finally the regulated trajectories are sent to inverse kinematics modules such that the position control instructions are generated to control the actuators. In both simulations and real robot experiments, we consistently show that the robot can perform sophisticated walking patterns. What is more, the robot can use the force feedback mechanism to deal with the irregularity in rough terrain. With this mechanism, the stability and adaptability of the robot are enhanced. In conclusion, the CPG-base control is an effective approach for legged robots and the force feedback approach is able to improve walking ability of the robots, especially when they walk on irregular terrains. 相似文献
19.
仿生跳跃机器人具备很强的越障和环境适应能力,但是由于机器人运动过程中较短的可控时间以及腾空阶段运动的不确定性,运动的稳定性对于仿生跳跃机器人至关重要.本文对仿袋鼠机器人跳跃运动过程中的稳定跳跃控制问题进行了研究.首先采用双质量弹簧负载倒立摆模型(spring-loaded inverted pendulum,SLIP)模型对袋鼠机器人的结构进行简化,建立了机器人系统的动力学模型,并对机器人的运动过程以及着地相与腾空相的切换条件进行了分析.然后采用解耦控制的思想,将SLIP模型的运动控制分解为水平速度控制和跳跃高度控制两个方面,分别通过控制着地角度实现对水平运动速度的控制,通过能量补偿实现对跳跃高度的控制.最后在ADAMS仿真环境中建立机器人模型并进行了机器人运动仿真实验.实验结果表明,本文提出的方法可以实现仿袋鼠机器人稳定的周期性跳跃运动. 相似文献