首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
孙刘杰  庞茂然 《包装工程》2022,43(7):244-253
目的 为实现高通量dPCR荧光图像阳性点高精确度分类,提出一种改进的K-means高通量dPCR荧光图像分类算法。方法 首先,将预处理后的荧光图像进行像素灰度值统计,依据图像亮度自适应选择波峰波谷作为聚类中心,通过马氏距离度量确定像素簇类;然后,将粗分类结果进行开、闭运算及删除小面积对象等形态学处理;最后,利用3次连通域统计方法完成细分类、位置标识和计数。结果 选取4种通道825幅荧光图像进行检验,平均精确率达到99.06%,召回率达到98.97%,分类效果良好。结论 文中提出的改进K-means分类算法可以实现对高通量dPCR荧光图像的高精度分类和计数,对其他荧光图像分类识别具有一定借鉴意义。  相似文献   

2.
刘丽  孙刘杰  王文举 《包装工程》2020,41(19):223-229
目的为了实现高通量dPCR基因芯片荧光图像的亮点分类与计数,提出一种基于支持向量机(SVM)的荧光图像分类与计数方法。方法首先对荧光图像进行去噪、对比度增强等图像预处理,对预处理后荧光图像进行亮点区域提取标注,去除背景与暗点的冗余信息,利用方向梯度直方图(Histogram of Oriented Gradient, HOG)提取鉴别特征,计算合并所有样本的亮点特征得到HOG特征向量,根据已得到的HOG特征向量创建一个线性SVM分类器,利用训练好的SVM分类器对荧光图像亮点进行分类与计数。结果对比传统算法,文中算法具有较高的分类识别精度,平均准确率高达98%以上,可以很好地实现荧光图像亮点分类与计数。结论在有限的小样本标注数据下,文中算法具有良好的分类性能,能够有效识别荧光图像中的亮点,对其他荧光图像分类研究也具有一定参考价值。  相似文献   

3.
一种高效地修正Retinex图像自适应对比度增强算法   总被引:3,自引:0,他引:3  
介绍了修正Retinex的图像对比度增强方法,引入了非线性变换函数修正彩色图像的照射分量和反射分量.全局对比度增强函数拉伸图像照射分量,改善了全局视觉效果.非线性S型函数对较大和较小的反射分量值改变较小,对中间值的改变较大,从而改善了图像局部对比度.将该方法与基于Retinex模型的图像增强方法进行了分析比较,结果表明,本算法处理后的图像具有更好的视觉效果,能够显著提高图像明亮区域和黑暗区域的可视细节.常规Retinex方法由于受到多尺度卷积运算的影响,运算复杂度普遍较高,提出的方法克服了目前常规的Retinex图像增强方法的不足,在RGB彩色空间和许多分离色度亮度的彩色空间的处理速度都很快,参数自适应较好,处理图像也没有出现明显的彩色失真现象.  相似文献   

4.
针对传统的红外图像对比度增强方法存在的运算速度慢、增强效果不佳的问题,提出了一种基于自适应传播机制的红外图像对比度快速增强算法。首先使用自适应传播机制求出红外图像的各种局部空间信息,然后对各种信息进行非线性拉伸调整,得到增强后的图像。最后,比较和分析了几种增强算法实验结果,证明了本方法快速高效的优异性质。  相似文献   

5.
图像导航是将机器人用于长骨骨折内固定手术中的关键技术.本文首先使用了一种用于定义和改变图像局部对比度的相似性测量方法.避免了图像的过增强和欠增强,然后用局部法对X光图像进行畸变校正;并提出了一种基于几何模型的对准方法,得到一条能够穿过髓内钉远端孔的三维路径,从而引导串联机器人锁定髓内钉.实验结果表明,该方法能够提高图像质量,有足够的定位精度和稳定性,并可以大大减少手术所需时间,降低医生所受辐射剂量.  相似文献   

6.
张铁栋  万磊  庞永杰  马悦 《声学技术》2008,27(5):726-731
声图像具有分辨率较低、混响干扰强、物体区域面积小、边界轮廓模糊不清等特点,因此采用全局的增强算法不能取得满意的结果。根据声图像特点,定义了局部增强函数,以边缘数目、边缘强度和熵定义了评价函数,通过采用PSO算法对增强函数中的参数进行了优化选取。最后与已实现的迭代自适应增强算法和直方图均衡化算法进行了对比分析,结果表明,该算法在保持了原图的灰度级的基础上,不但明显改善图像视觉效果,而且有效地增强和保留图像细节,改善图像质量,利于后续图像检测,是一种适合于声图像的增强方法。  相似文献   

7.
针对声呐图像增强算法研究较少等问题,提出了一种具有较强自适应能力改进图像增强算法,该算法通过自适应选择方差最小的滑动窗口作为当前像素点的增强处理窗口,并自适应判别像素点所属的区域类别,以进行相应的增强处理。仿真与现有算法的结果对比表明,本方法具有算法简单、易于实现等特点,且增强效果可较好地满足视觉效果的需求。  相似文献   

8.
王双园  姚志远  张玉荣  薛怀琦  何耿生 《光电工程》2024,51(6):240063-1-240063-12

针对内窥镜图像中因光照不充分、不均匀而造成的细节模糊问题,提出了一种用于人体上消化道内窥镜图像对比度和亮度增强的算法。通过对自适应伽马校正亮度增强算法和有限对比度自适应直方图均衡化算法改进并进行线性融合。通过对输入图像分别进行亮度增强和对比度增强处理,最终得到线性融合增强图像。将提出的算法应用于开源数据集中的上消化道胃部组织图像,并与现有算法进行了对比,采用峰值信噪比(PSNR)、结构相似度(SSIM)和自然图像质量评价(NIQE)作为图像评价指标。实验结果表明,所提出的图像增强算法与现有算法相比,提高了图像质量,为医疗诊断提供更多的细节信息。

  相似文献   

9.
一种自适应的图像双边滤波方法   总被引:15,自引:0,他引:15  
靳明  宋建中 《光电工程》2004,31(7):65-68,72
提出一种利用双边滤波的图像平滑滤波方法,即在滤除图像中高频噪声的同时,按照图像亮度变化保持图像中处于高频部分的边缘信息的自适应滤波过程。该滤波方法将传统的Gauss滤波器的权系数优化成Gauss函数和图像的亮度信息乘积的形式,优化后的权系数再与图像作卷积运算。这样,滤波时就可以考虑到图像的亮度信息,在滤除图像噪声的同时尽量保持了图像的边缘。由于双边滤波的方法可以使滤波器的权系数随着图像的亮度变化而改变,所以在滤波过程中能达到自适应滤波的目的。  相似文献   

10.
由于交流等离子体显示器(AC PDP)的显示特性是线性的,因此在显示接收到的视频信号前必须要进行反gamma校正.同时,为了提高显示器件的画质,必须要进行对比度增强.直方图均衡化是一种重要的对比度增强方法,但直方图均衡化的增强效果不可控,往往由于过增强而导致图像失真.本文结合上述两种技术提出了一种应用于AC PDP的反gamma校正与可控的动态对比度增强相结合算法.该算法能够在对输入视频图像进行反gamma校正的同时,实现幅度可调的动态对比度增强.同时避免了传统直方图均衡化对图像产生的过增强现象.本文实现了基于提出算法的实时图像处理器,并且在50英寸AC PDP上进行了测试.模拟仿真及实际测试结果均表明,本文提出的算法能够使AC PDP的画质得到显著提升.  相似文献   

11.
    
The enhancement of image contrast and preservation of image brightness are two important but conflicting objectives in image restoration. Previous attempts based on linear histogram equalization had achieved contrast enhancement, but exact preservation of brightness was not accomplished. A new perspective is taken here to provide balanced performance of contrast enhancement and brightness preservation simultaneously by casting the quest of such solution to an optimization problem. Specifically, the non-linear gamma correction method is adopted to enhance the contrast, while a weighted sum approach is employed for brightness preservation. In addition, the efficient golden search algorithm is exploited to determine the required optimal parameters to produce the enhanced images. Experiments are conducted on natural colour images captured under various indoor, outdoor and illumination conditions. Results have shown that the proposed method outperforms currently available methods in contrast to enhancement and brightness preservation.  相似文献   

12.
    
In this article, fuzzy logic based adaptive histogram equalization (AHE) is proposed to enhance the contrast of MRI brain image. Medical image plays an important role in monitoring patient's health condition and giving an effective diagnostic. Mostly, medical images suffer from different problems such as poor contrast and noise. So it is necessary to enhance the contrast and to remove the noise in order to improve the quality of a various medical images such as CT, X‐ray, MRI, and MAMOGRAM images. Fuzzy logic is a useful tool for handling the ambiguity or uncertainty. Brightness Preserving Adaptive Fuzzy Histogram Equalization technique is proposed to improve the contrast of MRI brain images by preserving brightness. Proposed method comprises of two stages. First, fuzzy logic is applied to an input image and then it's output is given to AHE technique. This process not only preserves the mean brightness and but also improves the contrast of an image. A huge number of highly MRI brain images are taken in the proposed method. Performance of the proposed method is compared with existing methods using the parameters namely entropy, feature similarity index, and contrast improvement index and the experimental results show that the proposed method overwhelms the previous existing methods.  相似文献   

13.
    
In this article, brightness preserving bi‐level fuzzy histogram equalization (BPFHE) is proposed for the contrast enhancement of MRI brain images. Histogram equalization (HE) is widely used for improving the contrast in digital images. As a result, such image creates side‐effects such as washed‐out appearance and false contouring due to the significant change in brightness. In order to overcome these problems, mean brightness preserving HE based techniques have been proposed. Generally, these methods partition the histogram of the original image into sub histograms and then independently equalize each sub‐histogram. The BPFHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two sub‐histograms based on the mean intensities of the multi‐peaks in the original image and then equalizes them independently to preserve image brightness. The quantitative and subjective enhancement of proposed BPBFHE algorithm is evaluated using two well known parameters like entropy or average information contents (AIC) and Feature Similarity Index Matrix (FSIM) for different gray scale images. The proposed method have been tested using several images and gives better visual quality as compared to the conventional methods. The simulation results show that the proposed method has better performance than the existing methods, and preserve the original brightness quite well, so that it is possible to be utilized in medical image diagnosis.  相似文献   

14.
    
Image processing requires an excellent image contrast‐enhancement technique to extract useful information invisible to the human or machine vision. Because of the histogram flattening, the widely used conventional histogram equalization image‐enhancing technique suffers from severe brightness changes, rendering it undesirable. Hence, we introduce a contrast‐enhancement dynamic histogram‐equalization algorithm method that generates better output image by preserving the input mean brightness without introducing the unfavorable side effects of checkerboard effect, artefacts, and washed‐out appearance. The first procedure of this technique is; normalizing input histogram and followed by smoothing process. Then, the break point detection process is done to divide the histogram into subhistograms before we can remap the gray level allocation. Lastly, the transformation function of each subhistogram is constructed independently. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 280‐289, 2011;  相似文献   

15.
《成像科学杂志》2013,61(5):447-457
Abstract

Palmprint identification system is one of the most powerful personal identification systems in recent years. In order to achieve high identification accuracy, all parts of the palmprint are needed to be enhanced. Histogram equalisation is a very popular image enhancing technique. A novel histogram equalisation technique, called recursive\ histogram equalisation, for brightness preservation and image contrast enhancement, is put forward in this paper. The essence of proposed algorithm is to decompose an input histogram into two or more sub-histograms recursively based on its mean, change the sub-histograms through a weighting process based on a normalised power law function and then equalise the weighted sub-histograms independently. Experiments show that our method preserves the mean brightness of a given image, enhances the contrast and produces more natural looking images than the other histogram equalisation methods.  相似文献   

16.
    
Histogram equalization is a well‐known technique used for contrast enhancement. The global HE usually results in excessive contrast enhancement because of lack of control on the level of contrast enhancement. A new technique named modified histogram equalization using real coded genetic algorithm (MHERCGA) is aimed to sweep over this drawback. The primary aim of this paper is to obtain an enhanced method which keeps the original brightness. This method incorporates a provision to have a control over the level of contrast enhancement and applicable for all types of image including low contrast MRI brain images. The basic idea of this technique is to partition the input image histogram into two subhistograms based on a threshold which is obtained using Otsu's optimality principle. Then, bicriteria optimization problem is formulated to satisfy the aforementioned requirements. The subhistograms are modified by selecting optimal contrast enhancement parameters. Finally, the union of the modified subhistograms produce a contrast enhanced and details preserved output image. While developing an optimization problem, real coded genetic algorithm is applied to determine the optimal value of contrast enhancement parameters. This mechanism enhances the contrast of the input image better than the existing contemporary HE methods. The quality of the enhanced brain image indicates that the image obtained after this method can be useful for efficient detection of brain cancer in further process like segmentation, classification, etc. The performance of the proposed method is well supported by the contrast enhancement quantitative metrics such as discrete entropy and natural image quality evaluator. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 24–32, 2015  相似文献   

17.
Photographing against a bright light source is difficult since the direct light from the light source causes glare phenomenon in the lens, changing the colour balance and reducing the image contrast within the field of view. To address the effect, we introduce a glare formation model that accounts for the characters of the glare. Based on the model, we propose a single image processing method to remove the glare in the images by decomposing the image into the scene layer and the glare layer. We then adjust the brightness and the colour balance of the scene layer to eliminate the influences of the glare. In order to enhance the contrast decreased by the glare, we use a local standard deviation-based contrast enhancement algorithm to boost the details while avoiding excessive enhancement. Experimental results show that the method removes the majority of the glare and improves the local contrast effectively.  相似文献   

18.
细节保持的非均匀光照图像亮度均衡算法   总被引:1,自引:0,他引:1  
席佳祺  陈晓冬  汪毅  蔡怀宇  孙刚  杨云生 《光电工程》2019,46(4):180439-1-180439-12
针对目前图像增强算法应对非均匀光照环境的局限性,提出了一种同时保持低照度区域和正常照度区域细节信息的图像亮度均衡算法。算法利用像素相邻频率和位置关系生成光照滤波器,有效分离图像光照信息和反射细节信息。通过光照阈值划分光照亮暗区域进行低照度亮度补偿,从而均衡图像亮度。实验结果显示,相对于经典NPEA算法,图像平均峰值信噪比提升15.4%、平均增强度提升245.0%、平均亮度阶差下降25.4%。因此,本文算法能够在保持不同照度区域的细节信息的同时均衡亮度,获得较好的视觉效果。  相似文献   

19.
    
The major problem in underwater image processing involves light attenuation. In order to overcome such light incorporation and dispersion issues, this paper proposes a new underwater image enhancement model that includes certain phases like contrast correction and colour correction. Here, two processes are worked out in contrast correction namely (i) global contrast correction and (ii) local contrast correction. Furthermore, as the histogram evaluation is the major part of any image enhancement, it is very important to choose the optimal limits of the histogram. To solve this optimization problem, this paper introduces a new optimization model namely Distance Oriented Cuckoo Search (DOCS) algorithm that also satisfies the objective function defined in this paper. The major process of this model focusses on Integrated Global and Local Contrast Correction (IGLCC). Finally, the proposed model compares its performance over other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号