共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
《计算机集成制造系统》2016,(11)
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。 相似文献
4.
《仪表技术与传感器》2017,(6)
针对滚动轴承聚类故障诊断需要事先确定聚类数目问题,提出了一种基于总体均值经验模式分解(EEMD)样本熵(SE)的相似近邻传播(AP)聚类故障诊断模型,该模型首先用EEMD方法将滚动轴承振动信号分解为一系列的内禀模式函数(IMFs),其次使用相关系数法确定IMF个数,然后使用SE计算其熵值,最后选择第1~3个IMF-SE值作为AP聚类算法的输入。实验结果表明:在没有预先划分聚类数目的情况下,AP聚类方法对滚动轴承的故障诊断效果较好。 相似文献
5.
针对滚动轴承振动信号的非平稳非线性特性,提出了一种采用集合经验模态分解(EEMD)熵特征提取、t-分布邻域嵌入(t-SNE)和粒子群优化-概率神经网络(PSO-PNN)的滚动轴承故障诊断方法。首先,对振动信号应用EEMD算法实现分解,生成多个固有模态函数(IMFs),对生成的含有主要故障信息的模态分量进行选择,以进一步实现熵特征提取,然后对高维特征数据应用t-SNE算法进行降维,最后利用PSO-PNN分类器进行故障识别。通过案例1和案例2的分析结果表明:该方法对滚动轴承故障识别率均达到100%,具有较高的故障识别率,能对滚动轴承的故障类型有效的识别。 相似文献
6.
针对滚动轴承发生故障时,振动信号的时域和频域特征都会发生变化的特点,提出了基于集合经验模态分解(EEMD)、改进果蝇优化算法(MFFOA)和支持向量机(SVM)的滚动轴承故障诊断方法。该方法主要是利用EEMD方法对故障信号进行分解,并计算各IMF分量的均方根值和重心频率,以此进行归一化处理得到特征向量。为了提高诊断精度,采用果蝇优化算法优化SVM参数,建立MFFOA-SVM模型,然后对提取的特征向量进行训练与测试,从而识别故障与否及发生点蚀故障的程度。利用该方法对实测信号进行分析与诊断,并与遗传算法的优化结果进行对比,验证了该方法的有效性,说明其具有良好的应用前景。 相似文献
7.
提出一种基于流形-奇异值熵的滚动轴承时频故障特征提取方法。首先,在HHT(Hilbert-Huang transform,简称HHT)时频分析基础上,应用二维流形方法提取信号流行成分以达到对轴承故障特征进行降维和提取敏感参量的目的;然后,定义了奇异值熵来定量衡量不同故障状态下流行成分的差异;最后,将流形奇异值向量与概率神经网络相结合,有效实现了轴承故障样本分类。与一般的考虑欧式空间全局范围最优值的主分量(principal component analysis,简称PCA)方法及以向量为研究对象的一维流形方法不同,该方法直接以二维信息为研究对象,避免了一维流形算法需将二维信息转化为向量带来的信息损失,与PCA方法相比更能发现隐藏在高维数据流形结构中的局部数据特征。工程信号分析验证了该方法的有效性,为准确提取滚动轴承故障特征提供了一种可靠手段。 相似文献
8.
《制造业自动化》2015,(17)
滚动轴承的故障信号具有非平稳性、非线性等特点,在经验模态分解过程中会出现模式混叠现象。集合经验模态分解算法(EEMD)是在原始信号中引入随机高斯白噪声序列,改变信号的局部时间跨度,可以有效抑制常规经验模态分解过程中产生的模式混叠现象。在研究EEMD原理的基础上,引入白噪声的幅值标准差准则来选择EEMD参数,并且对分解得到的所有的固有模态函数(IMF)分量通过相关系数法提取有效本征模态分量,再对提取的有效本征模态函数分量阀值处理后进行重构。通过Hilbert变换对重构信号进行包络谱分析,提取滚动轴承的故障特征。轴承故障信号实验结果表明,EEMD方法可以有效应用于滚动轴承的故障诊断中。 相似文献
9.
基于EEMD与空域相关降噪的滚动轴承故障诊断方法 总被引:2,自引:0,他引:2
针对滚动轴承早期故障信号非平稳、非线性,强噪声的特点,提出了一种将集成经验模态分解(EEMD)和空域相关降噪相结合的滚动轴承故障诊断方法。该方法首先采用EEMD对滚动轴承故障信号进行分解,得到若干个IMF分量,其次,采用峭度—度量因子准则筛选出有效的IMF分量进行信号重构,然后,采用空域相关降噪方法对重构信号进行降噪处理,最后,提取降噪后信号的故障特征频率对轴承故障进行诊断。采用建立的方法对某轴承内圈、外圈故障实验数据进行了分析与诊断,结果表明,方法能够有效克服信号分解的模态混叠效应,对故障信号噪声抑制效果明显,并能准确有效地提取出轴承的故障特征频率,实现对滚动轴承故障的精确诊断。 相似文献
10.
11.
基于EEMD能量熵和支持向量机的轴承故障诊断 总被引:2,自引:0,他引:2
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。 相似文献
12.
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法.首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型.试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型. 相似文献
13.
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 相似文献
14.
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 相似文献
15.
基于LCD和排列熵的滚动轴承故障诊断 总被引:1,自引:0,他引:1
排列熵(permutation entropy,简称PE)是最近提出的一种检测时间序列随机性和动力学突变行为的方法,可以考虑将其应用于故障诊断。由于机械系统的复杂性,振动信号的随机性和动力学突变行为表现在不同尺度上,因此需要对振动信号进行多尺度的排列熵分析。基于此,提出了基于局部特征尺度分解(local characteristic scale decomposition, 简称LCD)和排列熵的滚动轴承故障诊断方法。首先,采用LCD方法对振动信号进行自适应分解,得到不同尺度的的本征尺度分量(intrinsic scale component,简称ISC);其次,计算前几个包含主要故障信息的ISC分量的排列熵;最后,将熵值作为特征向量,输入基于神经网络集成建立的分类器。将该方法应用于滚动轴承实验数据,分析结果表明,此方法可有效实现滚动轴承的故障诊断。 相似文献
16.
将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。 相似文献
17.
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。 相似文献
18.
针对含噪信号的有效奇异值个数难以确定的问题,提出了一种改进的奇异值分解降噪方法——奇异值累积法。该方法通过计算奇异值的实际下降值与奇异值平均下降速度累积量的差值,并取该差值最大值点的位置作为有效奇异值的分界点来确定有效奇异值的个数。在此基础上,提出了一种基于奇异值累积法与快速谱峭度的滚动轴承故障诊断方法。采用奇异值累积法对原信号进行降噪处理,然后利用快速谱峭度确定滤波器中心频率及带宽,通过分析频段包络谱中明显的频率成分来诊断故障。该方法可以有效去除信号中的噪声,使得到的峭度值所反映的故障冲击更接近实际情况。对含内圈、外圈故障的滚动轴承实验数据进行分析,实验结果表明,相比快速谱峭度的故障诊断方法,该方法具有更好的故障识别效果。 相似文献
19.
基于奇异值分解拓展应用的故障特征提取技术 总被引:1,自引:0,他引:1
以奇异值分解理论为理论基础,通过对奇异值分解矩阵的架构分析,提出了滑移矩阵序列的架构方法。以该方法为指导,引入差异谱、主奇异和、最大特征值重构和最优化滤波器设计等方法,成功实现了滚动轴承故障特征提取。试验数据分析结果表明,提出的基于滑移矩阵序列奇异值分解的故障特征提取技术对于滚动轴承微弱冲击故障特征具有优越的识别和提取能力,对实现滚动轴承强噪声背景下的故障诊断具有重要意义。 相似文献