首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

2.
A procedure for estimating the useful life of a component for a given (admissable) probability of fatigue fracture origination under random loading is presented. The method uses material constants obtained from the S/N and cyclic stress/strain curves, standard deviation and probability density distribution of the loading process and a macroblock of harmonic cycles obtained by applying the rainflow cycle counting method to the random loading process. Theoretical and experimental lives are found to exhibit good agreement.  相似文献   

3.
4.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

5.
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model.  相似文献   

6.
In this paper, the frequency domain formula of equivalent Lemaitre stress taking into account the hydrostatic stress effect is first introduced, and the corresponding method for estimating fatigue life under multiaxial random loading is developed based on multiaxial SN curve. The proposed method is systematically validated with the random bending-torsion fatigue tests and numerical simulations. It has been shown that the hydrostatic stress has a significant influence on multiaxial fatigue life; the results predicted by the proposed method agree well with the experiment, and are more accurate than those obtained for the equivalent von Mises stress method.  相似文献   

7.
Fatigue tests were conducted on S45C steel under fully reversed strain control conditions with axial/torsional ( at ) and torsional/axial ( ta ) loading sequences. The linear damage value (n1/N1+n2/N2) was found to depend on the sequence of loading mode ( at or ta ), sequence of strain amplitude (low/high or high/low) and life fraction spent in the first loading. In general, at loading yields larger damage values than ta loading and the low–high sequence of equivalent strain leads to larger damage values than the high–low sequence. The material exhibits cyclic softening under axial cyclic strain. Cyclic hardening occurs in the torsion part of ta loading, which elevates the axial stress in the subsequent loading, causing more damage than in pure axial fatigue at the same strain amplitude. Fatigue life is predicted based on the linear damage rule, the double linear damage rule, the damage curve approach and the plastic work model of Morrow. Results show that overly conservative lives are obtained by these models for at loading while overestimation of life is more likely for ta loading. A modified damage curve method is proposed to account for the load sequence effect, for which predicted lives are found to lie in the factor‐2 scatter band from experimental lives.  相似文献   

8.
A new method of fatigue life assessment under multiaxial low-cycle regular and irregular loading is proposed, which is based on the modified Pisarenko-Lebedev criterion, the linear damage accumulation hypothesis, and the nonlinear Manson approach. The results of low-cycle fatigue tests of titanium alloy VT9 under irregular proportional and non-proportional biaxial loading are given. The tests were carried out at three Mises strain levels (0.6, 0.8, and 1.0%) with various combinations of proportional and non-proportional strain paths. All the tests were carried out at room temperature. The proposed method turned out to be effective and to allow for such factors as strain state type, strain path type and loading irregularity. __________ Translated from Problemy Prochnosti, No. 1, pp. 56–59, January–February, 2008.  相似文献   

9.
Based on the characteristics of the sliding surface, sliding direction, and fatigue damage mechanism of metal materials, the mechanical model of a body–bar–plate structure is proposed with consideration to the plastic damage mechanism. The elastoplastic constitutive equations and damage constitutive equations of the face-centered cubic (FCC) structure subjected to multiaxial cyclic loading were derived, and the damage evolution law of the body–bar–plate mechanical model was investigated. Then, the meso-damage evolution equation was established under multiaxial nonproportional loading. Subsequently, the relationship between the fatigue performance and microstructure under multiaxial nonproportional loading was investigated, and a damage mechanics–finite element method (FEM) with consideration to the damage evolution is proposed. The proposed model and method provide a new approach for predicting the fatigue life of metal materials.  相似文献   

10.
A new creep–fatigue damage cumulative model is proposed under multiaxial thermomechanical random loading, in which the damage at high temperature can be divided into the pure fatigue damage and the equivalent fatigue damage from creep. During the damage accumulation process, the elementary percentage of the equivalent fatigue damage increment is proportional to that of the creep damage increment, and the creep damage is converted to the equivalent fatigue damage. Moreover, combined with a multiaxial cyclic counting method, a life prediction method is developed based on the proposed creep–fatigue damage cumulative model. In the developed life prediction method, the effects of nonproportional hardening on the fatigue and creep damages are considered, and the influence of mean stress on damage is also taken into account. The thermomechanical fatigue experimental data for thin‐walled tubular specimen of superalloy GH4169 under multiaxial constant amplitude and variable amplitude loadings were used to verify the proposed model. The results showed that the proposed method can obtain satisfactory life prediction results.  相似文献   

11.
In order to assess the fatigue behaviour of structural components under a complex (cyclic or random) multiaxial stress history, methods based on damage mechanics concepts can be employed. In this paper, a model for fatigue damage evaluation in the case of an arbitrary multiaxial loading history is proposed by using an endurance function which allows us to determine the damage accumulation up to the final failure of the material. By introducing an evolution equation for the endurance function, the final collapse can be assumed to occur when the damage D is complete, that is when D reaches the unity. The parameters of this model, which adopts the stress invariants and the deviatoric stress invariants to quantify the damage phenomenon, are determined through a Genetic Algorithm once experimental data on the fatigue behaviour of the material being examined are known for some complex stress histories. With respect to traditional approaches to multiaxial fatigue assessment, the proposed model presents the following advantages: (1) the evaluation of a critical plane is not necessary; (2) no cycle counting algorithm to determine the fatigue life is required, because it considers the progressive damage process during the fatigue load history; (3) the model can be applied to any kind of stress history (uniaxial cyclic loading, multiaxial in‐phase or out‐of‐phase cyclic loading, uniaxial or multiaxial random loading).  相似文献   

12.
From the literature concerning the traditional nonproportional (NP) multiaxial cyclic fatigue prediction, special attentions are usually paid to multiaxial constitutive relations to quantify fatigue damage accumulation. As a result, estimation of NP hardening effect decided by the entire history path is always proposed, which is a challenging and complex task. To simplify the procedure of multiaxial fatigue life prediction of engineering components, in this paper, a novel effective energy parameter based on simple material properties is proposed. The parameter combines uniaxial cyclic plastic work and NP hardening effects. The fatigue life has been assessed based on traditional multiaxial fatigue criterion and the proposed parameter, which has been validated by experimental results of 316 L stainless steel under different low‐cycle loading paths.  相似文献   

13.
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ*  is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models.  相似文献   

14.
A new critical plane‐energy model is proposed in this paper for multiaxial fatigue life prediction of metals. A brief review of existing methods, especially on the critical plane‐based and energy‐based methods, is given first. Special focus is on the Liu–Mahadevan critical plane approach, which has been shown to work for both brittle and ductile metals. One potential drawback of the Liu–Mahadevan model is that it needs an empirical calibration parameter for non‐proportional multiaxial loadings because only the strain terms are used and the out‐of‐phase hardening cannot be explicitly considered. An energy‐based model using the Liu–Mahadevan concept is proposed with the help of the Mróz–Garud plasticity model. Thus, the empirical calibration for non‐proportional loading is not needed because the out‐of‐phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature, and the proposed model is shown to work for both proportional and non‐proportional multiaxial loadings without the empirical calibration.  相似文献   

15.
This paper investigates the effects of variable amplitude loading conditions on the fatigue lives of multiaxial rubber specimens. Two filled rubber materials were used and compared to investigate the effects of strain-crystallization on crack development NR, which strain crystallizes, and SBR, which does not. The applicability of Miner’s linear damage rule for predicting fatigue lives of variable amplitude tests in rubber and the use of both scalar and plane-specific equivalence parameters to characterize fatigue life results were also investigated. A fatigue life prediction approach that utilizes normal strain to find the critical plane and the cracking energy density on that plane to determine fatigue life is introduced and compared to other approaches. The effects of load sequence and temperature on fatigue life, as well as differences in fatigue lives using both stiffness and critical crack length failure criteria are discussed.  相似文献   

16.
In the present paper, the fatigue lifetime of metallic structural components subjected to variable amplitude loading is evaluated by applying 2 different multiaxial high‐cycle fatigue criteria. Such criteria, proposed by some of the present authors, are based on the critical plane approach and aim at reducing a given multiaxial stress state to an equivalent uniaxial stress condition. In particular, the procedure employed by both criteria consists of the following 3 steps: (1) definition of the critical plane; (2) counting of loading cycles; and (3) estimation of fatigue damage. Finally, the previous criteria are validated by comparing the theoretical results with experimental data related to smooth metallic specimens subjected to uniaxial and multiaxial variable amplitude loading.  相似文献   

17.
Fatigue tests under variable amplitude multiaxial loading were conducted on titanium alloy TC4 tubular specimens. A method to estimate the fatigue life under variable amplitude multiaxial loading has been proposed. Multiaxial fatigue parameter based on Wu–Hu–Song approach and rainflow cycle counting and Miner–Palmgren rule were applied in this method. The capability of fatigue life prediction for the proposed method was checked against the test data of TC4 alloy under variable amplitude multiaxial loading. The prediction results are all within a factor of two scatter band of the test results.  相似文献   

18.
This paper presents the results and evaluation of the multiaxial fatigue behaviour of laserbeam‐welded overlapped tubular joints made from the artificially hardened aluminium alloy AlSi1MgMn T6 (EN AW 6082 T6) under multiaxial loadings with constant and variable amplitudes. Several fatigue test series under pure axial and pure torsional loadings as well as combined axial and torsional proportional and non‐proportional loadings have been carried out in the range of 2·104 to 2·107 cycles. The assessment of the investigated thin‐walled joints is based on a local notch stress concept. In this concept the fatigue critical area of the weld root is substituted by a fictitious notch radius rref = 0.05 mm. The equivalent stresses in the notch, considering especially the fatigue life reducing influence of non‐proportional loading in comparison to proportional loading, were calculated by a recently developed hypothesis, which is called the Stress Space Curve Hypothesis (SSCH). This hypothesis is based on the time evolution of the stress state during one load cycle. In addition, the fatigue strength evaluation of multiaxial spectrum loading was carried out using a modified Gough‐Pollard algorithm.  相似文献   

19.
High‐cycle fatigue life prediction methods based on different critical planes, including the maximum shear stress (MSS) plane, the weighted average shear stress plane and the Maximum Variance shear stress plane, are compared by two multiaxial cycle counting methods, i.e. the main and auxiliary channels (MAC) counting and the relative equivalent stress counting. A modified damage model is used to calculate the multiaxial fatigue damage. Compared with the experimental lives for 7075‐T651 aluminium alloy, the predicted results show that the MSS method together with MAC counting is suitable for the multiaxial fatigue life prediction.  相似文献   

20.
针对钢桥面铺装工程中普遍采用的改性沥青(Stone Matrix Asphalt,SMA)、浇筑式沥青(Guss asphalt,GA)、环氧沥青(Epoxy asphalt,EP)混合料双层铺装结构,进行了循环车载作用下钢桥面与沥青混凝土铺装疲劳损伤特性理论分析与试验研究。基于疲劳损伤度,研究了钢桥面铺装疲劳损伤失效行为和疲劳开裂过程中损伤场、应力和应变场动态演变机制,推导出疲劳失效时的损伤场、应力和应变场计算表达式,并给出钢桥面铺装疲劳寿命理论公式。以三座钢箱梁桥桥面铺装(润扬长江大桥2005,南京长江三桥2005,苏通大桥2008)为例,对不同铺装结构组合方案下的复合梁进行疲劳试验分析和使用寿命理论预测。实例研究结果表明,钢桥面铺装疲劳损伤失效行为预估模型合理可行;相较于改性沥青、浇筑式沥青,环氧沥青混合料具有较强高的强度低变形能力,更适合于大跨径钢桥面铺装抗疲劳的设计要求;由环氧沥青混合料组合而成的“双层环氧沥青混凝土”和“浇注式沥青混凝土(下层)+环氧沥青混凝土(上层)”的抗疲劳性能优于其它沥青混合料铺装结构组合方案,同等厚度组合情况下疲劳使用寿命可延长1倍~2倍以上;“双层环氧沥青混凝土”已应用于润扬长江大桥、南京长江三桥和苏通长江大桥钢桥面工程,并已成功运行10年以上,其跟踪观测结果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号